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ABSTRACT
Information retrieval systems conventionally assess docu-
ment relevance using the bag of words model. Consequently,
relevance scores of documents retrieved for different queries
are often difficult to compare, as they are computed on dif-
ferent (or even disjoint) sets of textual features. Many tasks,
such as federation of search results or global thresholding of
relevance scores, require that scores be globally comparable.
To achieve this aim, we propose methods for non-monotonic
transformation of relevance scores into probabilities for a
contextual advertising selection engine that uses a vector
space model. The calibration of the raw scores is based on
historical click data.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—retrieval models

General Terms
Algorithms, Experimentation, Measurement, Performance

Keywords
Relevance scores, probability of relevance, logistic regres-
sion, online advertising

1. INTRODUCTION
Conventional information retrieval (IR) systems compute

document relevance scores based on the bag of words model,
where tf.idf term weighting considers word occurrence fre-
quencies in individual documents and in the entire corpus.
Heuristic tf.idf weighting works well in practice when doc-
uments need to be ranked by their scores for a given query.
However, in many cases, it is also necessary to consider ab-
solute values of document scores, in addition to being able to
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compare their relative values. For example, in meta-search
(or more generally, federated search), scores assigned by dif-
ferent search engines need to be reconciled. In some retrieval
scenarios (notably, in online advertising) the final decision
on which results are selected is based on their revenue po-
tential, which is estimated as a function of the probability
of a click and the bid amount submitted by the advertiser.
In these scenarios, a principled way of comparing relevance
scores is important to select the final set of results shown
to the user. One way to address this problem is to calibrate
the relevance scores using evidence from another knowledge
source. Previous works focused on training regression mod-
els using human relevance judgments (cf. [8]), while ignoring
the score of the initial retrieval step. As opposed to learning
the probability of click directly from the query and docu-
ment features, in this work we rely on the IR score to cap-
ture the information used in the first phase of the retrieval
and transform that score into the probability of a click by
using historical click data.

We focus on contextual advertising, where ads are selected
for a given Web page based on its content [4]. True assess-
ment of relevance probabilities is particularly important for
ad matching as current models of ad selection often simulta-
neously optimize relevance and revenue. The expected rev-
enue of an ad is computed by multiplying the estimated ad
relevance by some function of the bid, which is the amount of
money the advertiser pays if the ad gets clicked. Producing
accurate probability estimates of ad relevance is therefore
crucial for reliable ad ranking, as well as for determining
whether or not to show ads for each particular Web page or
query [3].

We translate the scores produced by a vector space model
into probabilities using logistic regression over click data.
We further enhance our click prediction through additional
query and ad features and examine a “mixture of experts”
model, where each expert is implemented using logistic re-
gression. The resulting transformation is non-monotonic
(that is, it reorders the set of retrieved ads) and gives sig-
nificant cumulative gain improvement over the vector space
model ordering when measured by the historical click data.

Determining the probability of relevance has been an ac-
tive field of study in IR for the last few decades. Both gen-
erative and discriminative models have been proposed to
estimate the probability of relevance [12, 9], however, these
do not use existing relevance scores. Another approach to
estimating the probability of a click is to use an aggregate
of the click-through rate (CTR) over a period of time at
different level of aggregation [1].



2. BACKGROUND: CONTENT MATCH
In this section we give a brief overview of the current prac-

tices in Web advertising based on [4].
Contextual advertising is an interplay of four entities: The

publisher rents space on its Web page in return for revenue;
its utility is usually measured by the revenue and user re-
tention. The advertiser provides the supply of ads. The ad
network selects the ads that are placed on publisher’s Web
pages. It acts as a mediator and shares the advertising rev-
enue with the publisher. Finally, the users visit the Web
pages of the publisher and interact with the ads. Studies
has shown that users perceive as more relevant ads that re-
late to the content of the publisher page [5]. The vector
space model has been proposed to compare the content of
the web page and ads to select relevant ads [11, 4].

The content match model aligns the interests of the pub-
lishers, advertisers and the network itself. In general, clicks
bring benefits to the publisher and the ad network by pro-
viding revenue, and to the advertiser by bringing traffic to
the target Web site. The revenue of the network, given a
page p, can be estimated as:

R =
∑

i=1..k

P (click|p, ai) price(ai, i)

where k is the number of ads displayed on page p, and
price(ai, i) is the click-price of the ad ai at position i. Note
that P (click|p, ai) needs to be normalized for position, tak-
ing into account that ads in higher positions are more visible
and tend to be clicked much more often. A common model
of determining how much an advertiser is charged is based
on the intuition that the charge should be equal to the min-
imum amount that the advertiser needs to bid to retain the
given position. As the ads are ordered by expected revenue,
this can be estimated using the bid of the next ad in the
revenue-ordered list of ads:

price(ai, i) =
bid(ai+1) P (click|p, ai+1)

P (click|p, ai)
.

Note that this computation requires to estimate the ratio of
the click probabilities.

3. MODELS
We propose models for estimating click probabilities P (c|r,x)

based on the vector space relevance score r and other fea-
tures x. We explore three models, all based on logistic
regression. The first model fits a single global logistic re-
gression to the entire data. Our second model partitions the
data by publisher ids and fits a separate local logistic regres-
sion to heavy hitters, i.e., the publishers who make a large
number of ad calls. For the tail publishers, we fall back on
the global logistic regression. Our third model is based on
a committee logistic regression that performs clustering and
fits a local logistic regression for each member of the com-
mittee. To avoid the cold-start problem (new page-ad pair
showing up in the test data), the cluster assignment proba-
bility of a pair is also modeled as a function of features. In
the next sections, we provide a description of logistic regres-
sion model (along with features used) and committee based
logistic regression. Throughout, we will assume a training
set of page-ad pairs with the ith pair having features xi and
relevance score ri, each pair is accompanied by a binary vari-
able yi indicating whether the ad was clicked or not when
shown on the page.

Logistic Regression
Logistic regression is a well known technique to estimate
conditional probabilities associated with a binary outcome
variable. We assume

yi|xi, ri,β ∼ Bernoulli(pi) (1)

log(
pi

1− pi
) = x

′
iβ + f(ri)

Here, β are unknown weight parameters associated with fea-
tures and the function f (unknown) quantifies the relation-
ship between relevance and CTR after adjusting for features.
Empirical analysis indicates that f is well approximated by
a quadratic function, however, we obtained more robust per-
formance by approximating f through a piecewise constant
function, i.e.,

f(r) =

M∑
k=1

αk1(r ∈ Bk) (2)

Bk is the kth bin and αk is the associated weight parameter.
For our experiments, we obtained Bk by dividing [0, 1] into
20-30 equi-spaced intervals. Maximum likelihood estimates
of the unknown parameters (β,α) is a well-studied prob-
lem [2], it can be obtained through several numerical meth-
ods like conjugate gradient, L-BFGS, Iteratively re-weighted
least squares[10]. Since most of the features in our scenario
are binary with a small number of them “turned on” for a
given page-ad pair i, we use the L-BFGS (CG applies as
well) method that exploits the sparse structure.

Committee Logistic Regression
Global logistic regression defined in Equations 1 and 2 as-
sumes the unknown weight parameters (β,α) are constant
for all page-ad pairs. This maybe a limiting assumption,
especially in our application where extreme heterogeneity is
expected to exist due to differences in publishers, ad cam-
paigns, user population. We relax this assumption by fitting
a mixture of logistic regressions, i.e.,

yi|xi, ri, {βc}, {αc} ∼
K∑

c=1

πicBer(pci) (3)

log(
pci

1− pci
) = x

′
iβc + fc(ri)

fc(r) =

M∑
k=1

αck1(r ∈ Bk)

Here, πi = (πi1, · · · , πiK) are cluster membership probabil-
ities for the ith pair, (βc,αc) are cluster specific regression
weights assigned to the features. The main advantage of
such a feature based mixture allocation strategy is to avoid
the cold start problem; we can assign a new pair to an ap-
propriate cluster based on features alone. To complete our
model specification, we provide the functional relationship
between πi and binary features wi = (xi, {1(ri ∈ Bk) : k =
1, · · · ,M}). There are several possibilities here, we explore
the simplest one that is based on a Naive Bayes assumption
for each co-ordinate πic, i.e.,

πic =

k∏
j=1

θ
wij

c,j (4)



where θc,j ’s are unknown constants estimated from data.

Model Fitting
We use an EM algorithm[6] to fit the model described by
Equations 3 and 4 to our training data. This is done by
introducing a “latent” allocation variable zi to each pair i
which is indicative of the cluster to which i is assigned. The
incomplete data log-likelihood based on Y is now optimized
by working with the complete data log-likelihood (Y ,Z);
this splits the log of sums arising due to Equation 3 into
sum of logs, usual trick employed in likelihood maximiza-
tion with mixture models. The E-step computes “responsi-
bilities” γi(c) for each pair i, i.e., the weight with which pair
i belongs to cluster c. Note that

γi(c) ∝ ˆπi,cBer( ˆpi,c),

where ˆπi,c is the estimated allocation probability based on

estimates ˆθc,j , and ˆpi,c is the estimated Bernoulli success

probability based on estimates of parameters (β̂c, α̂c). In
the M-step, the parameters βc’s, αc’s are updated by run-
ning separate weighted logistic regressions in each cluster,
the weight assigned to the ith pair in cluster c being given
by the estimated responsibility in the E-step. The alloca-
tion parameters {θc,j}’s are updated by fitting Naive Bayes
models in each cluster to the estimated responsibilities. We
iterate the E and M steps until convergence. To ensure
scalable model fitting to large amounts of click-log data, we
exploit grid computing. In addition to the relevance score,
we used the following features.

• Taxonomy: Each page and ad is classified into a
hand-labeled taxonomy of roughly 6,000 topical classes
[4].

• Domain: The domain of the publisher, which is a
good proxy for the position of the ads on the page.

• Ad position within a slate of ads.

• Words in common:Top few words that occur both
on the page and the ad selected by the ratio iw =

CTR(w,ap)

CTR(w,a)CTR(w,p)
> 2, where CTR(w, ap) is the CTR

across (page,ad) pairs in which w occurs on both page
and ad, CTR(w, a) and CTR(w, p) are marginal CTR’s
when word w occurs on ad and page, respectively.

4. EXPERIMENTAL EVALUATION
We now present an extensive evaluation of our methods

on a sample of data obtained from an actual content match
system of a major US search engine. To demonstrate the
effectiveness of converting relevance scores to probabilities,
we use historical data to compare retrieval results using con-
ventional tf.idf scores and using our probability estimates.
Our training data consisted of about 2 million contextual ad-
vertising ad slates spanning 15 days. All models were fitted
using the training data, and results are reported by comput-
ing metrics on the test data, which consists of approximately
1 million slates spanning 7 days. Overall, our data consisted
of approximately 400 publishers with the top-20 accounting
for 70% of the total number of clicks.

We refer to the different models as follows. We use VSM
to denote the baseline system that uses a vector space model
with tf.idf weights (similar to the approach proposed by

Broder et al. [4]). Global logistic regression without word-in-
common features will be called Global, while GlobalW is a
global logistic regression that includes the word-in-common
features. The variants of committee logistic regressions with
and without word-in-common would be denoted by EMW
and EM, respectively. Finally, PART denotes the model
that runs local logistic regression for the top 20 publishers
that account for approximately 70% of clicks, and falls back
to Global for the tail publishers that obtain the remaining
30% of clicks.

We compare the ad ranking of the VSM model to the rank-
ing based on P (click|p, ai) for the various models using the
Discounted Cumulative Gain (DCG) metrics. For a given
slate with l positions ordered by priority (position 1 being
the best), the DCG is defined by

l∑
i=1

wi(2
ri − 1),

where ri is the relevance of ad at position i and wi is a
position-specific weight, assumed to be 1/log2(i + 1) in the
standard literature. The relevance ri is binary and takes the
value 1 if the ad at slate position i is clicked, and 0 otherwise.
Normalized DCG (NDCG) is defined as DCG/IDCG, where
IDCG is the ideal DCG attained using the best relevance
ranking.

Logarithmic decay by positions is a reasonable assumption
when ads are presented in a list format (e.g., in Web Search).
This is not the case in our application where the presentation
of ad slates depends critically on the page layout, which can
vary greatly. An ideal estimate of wi should be based on
CTR differential, that is, the drop in CTR when a typical ad
is moved from position 1 to i after randomizing over all other
factors. This is intractable to be calculated at a granularity
of a page, hence we make a simplifying assumption that
decay is constant across all pages of one publisher and use
the per-publisher decay curve through historic data. In our
data we observed clear heterogeneity in CTR in different
publishers due to the positional effects. We note that the
bidding mechanism automatically induces a certain degree
of randomness into the system, hence we believe such global
decay estimates of positional effects are reasonable for the
purpose of evaluation.

More specifically, we let wi = CTR(i)/CTR(1), where
CTR(i) denotes the global CTR at position i. We refer
to the modified NDCG formula that uses these weights as
Emp-NDCG, which stands for NDCG with empirically esti-
mated decay weights. We refer to the standard formulation
of NDCG as Log-NDCG. Figure 1 shows the weight curve
obtained through logarithmic weighting and through global
positional CTR estimates. The weights estimated empiri-
cally from the actual data are further smoothed through an
isotonic regression to ensure monotonicity. The CTR-based
decay tapers off much faster than the standard logarithmic
weighting resulting in higher relative reward for Emp-NDCG
at the premium positions (i.e., positions 1 and 2).

Table 1 provides the overall NDCG numbers for two dif-
ferent choices of decay (Logarithmic and Empirical) for all
methods. We note that Global, GlobalW, EM, EMW all
have similar performance. PART has the best performance
and has a relative improvement of 13% in Log-NDCG, 2%
in Emp-NDCG over the VSM baseline. The improvement of
PART over Global is marginal on Log-NDCG scale (1%)
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Figure 1: Decay weights for Log-NDCG and
Emp-NDCG. Empirical refers to Emp-NDCG with
weights estimated from the data; these are
smoothed to be monotonic through Isotonic regres-
sion.

Model VSM PART Global GlobalW EM EMW
Log-NDCG .692 .781 .773 .773 .771 .773
Emp-NDCG .549 .561 .556 .555 .555 .555

Table 1: Overall NDCG for different models com-
pared to the vector space model (VSM) baseline

but relatively better on Emp-NDCG scale (0.9%). This is
largely because PART provides separate estimates of po-
sitional effects for top publishers, and is more effective in
re-ranking ads that get clicked at the bottom to the top of
the list. In fact, if we just confine the evaluation to the top
20 publishers where PART differs from Global, the Emp-
NDCG scores for PART and Global are 0.564 and 0.556,
respectively, a 1.4% relative improvement.

To test statistical significance, we conducted a bootstrap
procedure [7], i.e., we computed average NDCG by taking
a random sample of size n (we used n = 100, 000) from the
clicked slates with replacement. We took B such bootstrap
replications (we used B = 50) and computed empirical dis-
tributions of relative improvements between the NDCG’s.
The improvements reported above between (PART,VSM)
and (PART,Global) are statistically significant. In Fig-
ure 2, we look at the distribution of average NDCG per pub-
lisher for PART and VSM. Here again, the NDCG’s are
significantly better for the best probabilistic model across
publishers.

The experiments show that modeling using the relevance
score and the four features described above produces a signif-
icant improvement of the ad ordering. One of the questions
posed by this result is what contributes to the improvement
- the prediction modeling or the extra information provided
by the features used in the model. Of the four sets of features
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Figure 2: Model performance across publishers

used in the modeling, two (words in common and taxonomy
features) are already used in the vector space model and do
not contribute new information to the re-ranking process.
The other two (publisher domain and ad position) pertain
only the page and its layout and are not used in ad selection.
While it is feasible to assume that ad selection could be influ-
enced by the ad position on the page (.e.g. ads in all capital
letters do better at the bottom of a page), this is an unlikely
cause of the improvement of ad ranking. Therefore we can
conclude that the NDCG improvements are brought by the
prediction modeling having better differentiation than the
cosine similarity used in the VSM.

5. CONCLUSIONS
We described a method for converting vector space rel-

evance scores into probabilities for contextual advertising.
The transformation function uses the original (VSM-based)
score as well as other features of the page to achieve non-
monotonic transformation that significantly improves the
NDCG over the click data. In fact, we obtain a 13% rel-
ative gain in NDCG over the vector space model using our
best probabilistic model.
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