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ABSTRACT

The generative process underlies many information retrieval mod-
els, notably statistical language models. Yet these models only ex-
amine one (current) version of the document, effectively ignoring
the actual document generation process. We posit that a consider-
able amount of information is encoded in the document authoring
process, and this information is complementary to the word oc-
currence statistics upon which most modern retrieval models are
based. We propose a new term weighting model, Revision His-
tory Analysis (RHA), which uses the revision history of a doc-
ument (e.g., the edit history of a page in Wikipedia) to redefine
term frequency—a key indicator of document topic/relevance for
many retrieval models and text processing tasks. We then apply
RHA to document ranking by extending two state-of-the-art text
retrieval models, namely, BM25 and the generative statistical lan-
guage model (LM). To the best of our knowledge, our paper is the
first attempt to directly incorporate document authoring history into
retrieval models. Empirical results show that RHA provides consis-
tent improvements for state-of-the-art retrieval models, using stan-
dard retrieval tasks and benchmarks.
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H.3.3 [Information Search and Retrieval]: Retrieval models

General Terms
Algorithms,Theory
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1. INTRODUCTION

Modern information retrieval systems employ ranking models,
where the documents are represented as vectors of terms, which
could be either individual words or more sophisticated features.
Following the initial feature construction and selection, the notion
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of term weighting becomes central in these models, as it prescribes
the way to compute the importance of a term in a given document.
Multiple term weighting approaches have been proposed to date,
yet the majority of them are based on the statistics of word occur-
rence in various corpora. Consequently, it is natural to ask, whether
there exist substantially different sources of knowledge about term
importance, which are complementary to these frequency-based
approaches.

In this paper, we propose and evaluate an approach that relies on
a novel source of such knowledge, namely, the revision history of
a document. Many information retrieval models, notably statistical
language models, assume a generative process of document cre-
ation, whereas the terms are chosen to be included in the document
according to their importance to the chosen document topic(s), pre-
viously chosen terms, and other factors that vary by model. Yet
these models only examine one (final) version of the document to
be retrieved, effectively ignoring the actual document generation
process, even when it is available.

Due to the recent proliferation of collaboratively generated con-
tent such as Wikipedia, and other versioned content, the document
generation process is often directly observable by tracing the edit
history of the document. From a stub, a short document grows into
a full document, over hundreds and often thousands of incremental
edits, through the efforts of many editors. Each step adds or re-
moves content, aspects of a topic, or modifies the emphasis of the
document to reflect current events. We posit that a considerable
amount of information is encoded in this document authoring pro-
cess, and this information is complementary to the word occurrence
statistics upon which most retrieval models are based.

Prior research explored several alternative directions for term
weighting. One family of methods exploits the document struc-
ture, and assigns different weights to terms that occur in different
parts of the document. Other approaches rely on exogenous statis-
tical information such as the number of times the term occurs in the
title of a Wikipedia document or in the query log of a Web search
engine, as well as click and browsing statistics on the Web. Yet
other approaches employ cluster-based language models or content
aggregation across the Web graph. To the best of our knowledge,
however, prior studies have not examined the very process of doc-
ument creation as a source of knowledge about term importance.

We propose a new term weighting model, Revision History Anal-
ysis (RHA), which uses the revision history of a document (e.g., the
edit history of a page in Wikipedia) to redefine term frequency—a
key indicator of document topic/relevance for many retrieval mod-
els and text processing tasks. We combine term importance in-
formation distilled from the revision history with the conventional
statistical approaches, in order to obtain a better characterization of
terms’ true importance in a document. We then apply RHA to doc-



ument ranking by extending two state-of-the-art text retrieval mod-
els, namely, BM25 and the generative statistical language model.
We believe our paper is the first attempt to directly incorporate doc-
ument authoring history into retrieval models.

The main contributions of this paper are threefold. First, we
propose a novel method, Revision History Analysis (RHA), which
examines the edit history of a document to estimate the relative
importance of document terms. The process of document author-
ing over time incorporates a significant amount of human editors’
knowledge about the world, as well as their judgment of the rela-
tive importance of terms for a given topic, hence this source of in-
formation is complementary to the existing statistical approaches.
Second, we apply RHA to augment two state-of-the-art IR mod-
els, namely, BM25 and a statistical language model, which allows
us to refine the term weighting computation for ad-hoc informa-
tion retrieval. Finally, the results of our empirical evaluation show
that RHA provides consistent improvements for both BM25 and
language model-based retrieval models on standard retrieval tasks
and benchmarks. Our work indicates a promising new direction in
searching collaboratively generated content.

2. REVISION HISTORY ANALYSIS

This section introduces our general approach and algorithms for
revision history analysis. In this paper, we consider the historical
revisions of a document as a linear sequence of edits, ignoring spe-
cial cases of such as reverting revisions to recover from vandalism.

Thus, a page editor modifies a document by adding relevant in-
formation or deleting non-relevant information from the previous
version of this document, and generates a new version. This pro-
cess suggests that relevant terms for a web document will frequently
appear in most revisions and are rarely deleted. The frequency of
these important terms is likely to grow along with the growth of the
document length. On the other hand, non-relevant terms may exist
in some revisions incidentally, but will be removed by editors in
subsequent revisions.

The main observation of this paper, which we attempt to capture
in our models, is that the importance of a term in a document can be
measured by analyzing the revision history. Section 2.1 mathemati-
cally describes this intuition by starting with a simple linear growth
model. However, we find that this global model is insufficient, as
documents often evolve in bursts, when a document undergoes a
series or rapid and/or substantial revisions over a short period of
time, causing a term to suddenly become more important for the
document late in that document’s lifetime. Thus, Section 2.2 intro-
duces the burst-based measurement of term relevance.

Our hypothesis is that the term weight for a versioned document
should incorporate the term frequency in both the historical ver-
sions of the document, and in the latest (current) version of the
document. For documents that grow incrementally (that is, fol-
lowing a steady expansion process), this model is sufficient, and
is captured by our “global”" model. However, some documents un-
dergo series of dramatic changes, as the document is expanded or
revised to reflect news events or significant bursts of editing effort,
requiring our model to account for such significant changes in the
document content. Thus, our final RHA model of term frequency
incorporates the “global” term growth (Section 2.1), the “bursty”
document generation model (Section 2.2), and the final (latest) ver-
sion of the document at the time of indexing.

2.1 Global Revision History Analysis

We now introduce our first (and simplest) RHA model, which
assumes that a document grows steadily over time.

Consider a document d from a versioned corpus D (e.g., Wikipedia),

and V' = {v1,v2, ..., un } to be the revision history of d. The num-
ber of revisions of document d is n. The latest revision of document
d is designated to be the latest document snapshot, v,, = d. Finally,
let c(t, d) be the frequency of term ¢ in d.

We can now introduce a term weight according to the RHA global
model, T Fgi0pq1(t, d), that would capture the appearance of ¢ across
the sequence of document versions. Intuitively, we wish to support
the varying term importance across revisions, for example, to cap-
ture the importance of the few original terms used to describe a
concept in Wikipedia, compared to terms added later in the doc-
ument’s “lifespan”. Specifically, we define the new term weight
as:

TFglobal (tv d) = Z C(?avj) ’ (1)

Jj=1

where j is the counter enumerating all revisions of document d
from the first revision (j = 1), to the last revision (j = n). The
raw frequency of term ¢ in revision j is indicated by c(t, v;), is
modified using the decay factor 7, where a controls the speed of
the decay. This decay factor, j¢ adjusts the relative term weight
across the multiple revisions to reflect the importance of term ap-
pears in different stages of the document evolution. For example,
when o > 0, the weight of a term will decrease in later revisions,
to reflect the importance of a term appearing early in the docu-
ment lifetime. In contrast, when o« < 0, the decay factor rewards
the terms appearing in the latter revisions. In our experiments, we
found that the optimal value for o was 1.1, implying that the term
is more important if it appears early in the revision history of a
document.

2.2 Revision History Burst Analysis

Documents can undergo intensive editing or massive content change
when the popularity of a document increases, or when related events
happen, which are immediately described on the document. We call
such situations bursts, and extend the “global” decay model de-
scribed above to capture these kinds of document evolution. These
bursts are significant since the topic of a document may be differ-
ent after the burst. For example, the content of a document may be
updated to reflect the latest news, and as a result the topic of the
document can shift over time, as the news evolve.

For example, consider a Wikipedia page devoted to the movie
“Avatar”. In the earlier (ca. June 2006) revisions of the page, there
was little editing activity and little content, the page simply men-
tioned that James Cameron would direct the film, which was going
to be released in 2009. However, in October 2006, there is a dra-
matic change to the content as new details about the plot, budget,
and development are added. There is another “burst” in December
describing the production and more details about filming. However,
in the Wikipedia page that describes the meaning of the Hindu con-
cept “Avatar”, its etymology and associated deities, the addition
of content increment is considerably slower and editing bursts are
much less frequent than in the movie-related page. Consequently,
in the movie page, term weights are adjusted by incorporating burst
history. In what follows, we present the RHA burst model, and we
describe how to detect these bursts in Section 2.3.

Recall, that the main assumption underlying the RHA model is
that important terms are introduced early in the life of a document.
However, a burst “resets” the decay clock for a term, in a way it
“renews” the importance of the term. The intuition here is that if the
term is still around after a major rewrite of the document content,
then this term must be important. Note that a document could have
multiple bursts over its revision history, as can be captured naturally
in our approach.



Let B = {b1, b2, ..., bm } be the set of burst indicators for doc-
ument d, and m = |B| is the number of bursts. The value of b;
is the revision index of the end of the j-th burst of document d.
We define the term weighting for the burst model to be the sum
of decayed term weights over all the detected bursts. Each burst
"boosts" the term weight for a short time, which then decays just
like in the global model. Then, the overall term frequency weight
of ¢ is defined as:

m n t7
TFburst(tad) = Z Z %7 (2)

where k is the counter enumerating the revisions after burst b; for
each j. The raw frequency of term ¢ in revision j, c(t,vx) is di-
vided by the decay factor (k — b; + 1)?. Thus, when a burst b;
happens, the decay factor for burst b; will be set' to 1, and then the
impact of this burst will gradually decrease in subsequent revisions
because the decay factor increases with the growth of k. For a doc-
ument d, Equation 2 calculates the impact of a burst by summing
up term frequency with an exponential decay and adding the im-
pacts of m bursts together. In our experiments, the optimal value
for (3 estimated on the training set was found to be 1.1, equal to the
value of « introduced in the preceding section.

For more convenient and effective manipulation we can also rep-
resent our burst model in a matrix form. Recall that the decay clock
will be reset after each burst event - thus contributing a respective
decay factor for each subsequent revision. These can be intuitively
represented in a decay matrix W, where each row ¢ represents a
potential burst position, and each column j represents a document
revision. Each entry in W is computed as:

1

wij =4 (G—i+ 1)’
0 otherwise.

it < j,

Thus, the matrix W has the following structure:

1 1/2% 1/3% ... 1/n”

0o 1 1/2° 1/(n—1)?
w=|0 o0 1 : 3)

0o 0 .. 1

where 3 in the the global parameter/exponent of the decay, and
the ¢-th row of W corresponds to the set of the decay factors for
due to the ¢-th burst in the editing history. If the only burst in the
editing history occurred at revision v;, the decay factors for the
subsequent revisions, are stored in the cells w; ;, Wi i+1, ..., Wi n.
The corresponding values are 1,1/2°%,1/3° ..., 1/(n —i + 1)".
Note that the matrix W is triangular, since bursts do not affect any
revisions prior to a burst - that is, the columns to the left and above
of the cell representing the burst event are not affected by the burst.

Of course, multiple rows in W could be associated with a burst,
but probably not all rows — resulting in many potential burst posi-
tions. Thus, we introduce a vector U = [u1, U2, ..., U] as the burst
indicator vector that will be used to “filter” the decay matrix W to
contain only the true bursts (we discuss how the bursts are detected
in the next section). Specifically, each entry in U, u;, is set to 1 if
a burst is detected at revision j, and is set to 0 otherwise.

We now multiply the row vector U and the decay matrix W,
resulting in a vector UW. Each entry of UW, uw; contains the
sum of the decay factors, each one set accordingly to the non-zero

!Notice that (k — b; +1)® = 1 for the first revision after burst b;.

respective bursts prior to, and including, the j-th revision. For ex-
ample, consider the case where U = [1,0, 1], that is, there was a
burst detected in both revisions 1 and 3 but not in revision 2. Then,
wws = 1-1/3° +0-1/2° + 1 -1, where the first term is the
decay factor from the first burst, the second term is O since there
was no burst in revision 2, and the third term is 1 since the burst
is detected in the current revision and this version’s contribution is
not yet decayed.

Thus, the term weighting of the RHA burst model for a document
d can be finally computed as a scalar dot product between the vector
UW and the term frequency vector C, where each entry c(¢,v)
represents the raw frequency of term ¢ in revision v of the document
d. Specifically:

TFbu'rst(t, d) =UW - C(t, 1}3) (4)

c(t,.vn)

where UW is the product of the burst indicator vector U with the
decay matrix W as described above. The resulting modified term
frequency value for a term ¢ and document d, T Fyyrs:(t, d), com-
bines the decayed values of term frequencies of ¢ across all bursts
in the edit history of d. For example, consider the case where d
had only three revisions, the burst vector is U = [1,0, 1] as be-
fore, and the frequencies of a term t were [2,5,7]7 in the respec-
tive versions. Then, the combined term frequency T Fpyrst (¢, d) =
1-2+41/2° .54 (1/3° + 1) - 7, where the third term in the sum
is “boosted” by the burst in revision 3.

Having described the general burst weighting model, we now
turn to the task of actually detecting the burst events.

2.3 Edit History Burst Detection

Documents evolve at different rates and may exhibit a variety of
editing activity patterns (as captured by the revision history). For
example, as news events happen, some documents may have to be
updated to reflect the change in the real world. Other documents
may be steadily updated by editors providing more detail or em-
phasizing certain topics over others. Some of these changes are
incremental and gradual, which leaves the article content relatively
stable. However, some of the most important or drastic changes
are reflected as “bursts” in the content or revision history (e.g., in
cases where a real world event requires significant change to a doc-
ument). Thus, the change in the content of a document or edit
activity divides the document into natural local and global episodes
that correspond to the burst. We define an edit history “burst” as
either intense editing activity or dramatic content change within a
time interval. Thus, we propose content-based and activity-based
burst detection algorithms, and a hybrid combined algorithm, as
described in the rest of the section.

Content-based burst detection.

We consider the relative content change one of the important
features signaling potential bursts. The series of revisions V' =
V1, V2, ..., Un for document d are ordered by the time they appear
in the revision history. For a particular pair of revisions (v;_1, v;)
in this revision sequence, if the amount of content change in this
interval is above a threshold «, then we consider 5 to be the end of
a content-based burst event Burst.. More formally,

Burst.(vj) = Lif 1] >
0 otherwise.
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Figure 1: Applying the content-based (a), activity-based (b) and combined (c) burst detection methods to the Wikipedia page

“Avatar”.

where |v;] is content length for the j-th revision. The value of
threshold « is important: it should not be set too high, as it may
miss potential bursts, or too low, as it would cause many false
bursts. After development experiments, we set « = 0.1 for all
subsequent experiments.

Activity-based burst detection.

To model bursts caused by intense editing activity during a cer-
tain time period, we consider the edit count in that time period as
an important measure signalling bursts for a particular document.
That is, we divide the revision history V' of a particular document
d into episodes, where the duration of each episode is At; then,
an episode is considered bursty if the edit count for the episode
exceeds “normal” amount of edit activity during the document life-
time. Then, the last revision in that bursty episode is selected as
the end of the burst. More formally, a bursty episode Burst, is
detected as:

L iflepj| > p+o,

Bursta(ep;) = { 0 otherwise.

where p indicates the average number of edits within an episode
and o is the standard deviation across all the episodes in the docu-
ment history. For our experiments, we set the episode length to be
one day.

Combined burst detection.

Both content-based and activity-based burst detection methods
are informative as they capture significant changes in a document.
Thus, we combine the two sources of information (content change
and the editing activity level). In our experiments we use the sim-
plest combination method of taking the union of the content-based
and activity-based bursts. Specifically, the final set of bursts is com-
puted as:

Burst(v,) = { 1 if Burstc(vj) + Burstqe(v;) > 0,

0 otherwise.

The results of different burst detection strategies above to the
Wikipedia page titled "Avatar" are illustrated in Figure 1. Fig-
ure 1(a) shows the result of applying the content-based algorithm,
Figure 1(b) illustrates the result of the activity-based algorithm, and
Figure 1(c) shows the result of combining the two methods. As one
can see, the combined model is more comprehensive as it captures
both types of significant events in the “life” of a document.

Recall, that in the RHA burst model, Burst(v;) will be used as
the j-th entry of burst indicator vector U defined in Section 2.2.

This completes the description of the RHA revision history analy-
sis method, and we now turn to incorporating RHA into retrieval
models.

3. INCORPORATING RHA IN RETRIEVAL
MODELS

This section describes how RHA can be incorporated into two

state-of-the-art IR models, namely, BM25 (Section 3.1), as well as
into statistical language models (Section 3.2).

3.1 RHA in BM25

‘We now introduce the way we integrate both the global model
and the burst model of RHA into the Okapi BM25 ranking function.
The original Okapi BM25 ranking function is defined as:

TF(t,d) - (k1 +1)
S(Q,d) =Y IDF(t)- )
@ t;g ® TF(t,d)+ ki (1—b+b- 14

where T'F(t, d) represents term frequency for term ¢ in document
d. Inverted document frequency I DF'(t) for term ¢ is calculated

as:
N —n(t)+0.5

n(t) + 0.5
where N is the number of documents in the collection, N = |D|,
and n(t) is number of documents containing term ¢.

IDF(t) = log 6)

BM25+RHA: We now formally define the modified BM25 model,

BM?25+RHA, that incorporates the RHA term weighting. The main

change is that we replace the term frequency in BM25 with the

modified term frequency T'F'r i 4, which is the mixture of the global
and the burst models as well as the standard term frequency com-

puted from the latest revision of the document. Specifically, T Frm a
is computed as:

TFRHA(ty d) = AITFglobal (t7 d)+A2TFbu7'St (t, d)-‘r)\gTF(t, d)

@)
where T Fgopai(t, d) is defined in Equation 1, and T Fpyrst(t, d)
is defined in Equation 2. The final T'F'ri 4 value is thus a linear
combination of the global and burst components, weighted so that
A+ A+ A3 =1.

Using the modified term frequency T Fry 4, the BM25 ranking
function with RHA term weighting is redefined as:

TFria(t,d) - (ki +1
SrrA(Q,d) = Z IDF(t)- rHA(t,d) - (k1 + 1)
teQ TFrua(t,d)+ki-(1—b+b-

ld]
a,'vgdl)

(®)




The BM25 parameters are set to k1 = 1,b = 0.5, which are the
default values in the Lemur Toolkit. While these parameters can
also be optimized for the RHA modification, we decided to keep
the standard Lemur parameters to make our results easier to repli-
cate.

Extending to Multiple Field BM25 Model: Recently, a fielded
variant of BM25, called BM25F, has been demonstrated to improve
the performance of the BM25 model, by separately weighting the
contribution of terms from the different fields in the document [27].
RHA can be naturally incorporated into BM25F by separately com-
puting the T'Fri 4 values for each field of the document (without
any additional changes to the above method). Our preliminary ex-
periments with BM25F+RHA model appear promising, and will be
further explored in future work.

3.2 RHA for Statistical Language Models

We now show how RHA can be integrated into the language
modeling approach for document ranking. Let D be the collection,
P(t|d) be the conditional probability of term ¢ being generated by
document d, and P(¢|Q) be the probability of term ¢ being gen-
erated by query Q. We apply Kullback-Leibler divergence as the
ranking function, following Zhai and Lafferty [21]. To score a doc-
ument d w.r.t to a given query (), we estimate the query language
model and document language model, then score the document as
follows:

P(tQ)
P(t|d)

S(Q,d) = D(QI|d) = > _ P(t|Q)log ©)

teV

where V' is the set of all words in the vocabulary. Thus, the main
task of the ranking is to estimate conditional query term probability
P(t|Q) and document term probability P(t|d). Generally the doc-
ument language model estimated with some form of smoothing,
with Dirichlet prior smoothing has been showed to be one of the
most effective smoothing methods. With Dirichlet prior smooth-
ing, P(t|d) estimated as:

c(t,d) + pP(t|D)

10
dl + (10

P(t|d) =

where c(t, d) is the count of term ¢ in document d, 4 is a smoothing
parameter that is often set empirically, and P(¢| D) is the collection

term probability which is estimated as %. The query term
€
probability is estimated as P(¢|Q) = C(\tcé?)-

LM+RHA: We now formally define our modified LM model, LM+RHA.

The main change to the original LM model above is that we rede-

fine the conditional document term probability P(t|d) as Pre a(t|d),

which in turn is computed as the linear combination of the proba-
bility derived from RHA and that from the latest version of the
document:

PRHA(t|d) = AIF)global(tld) + AQPburst(t‘d) + )‘SP(t|d) (11)

where Pgiopai(t|d) is the probability of term ¢ generated by the
revision history of document d, and Phys:(t|d) is the probability
of term ¢ generated by the bursts within the revision history of doc-
ument d. Specifically, Pyiobai(t]|d) is computed as:

n C(t7’Uj)
j=1 i

Pglobal(t|d) = ’ et vj) (12)
2t ed Zj=1 e

obtained by normalizing 1" Fgiopq1(t, d) with the sum of all the term
frequencies of ¢ across all the revisions of the document.
Pyurst(t]d) is defined as:

m n C(t, Uk)
j=1 Zk:bj m

c(t/ , Uk)

Zt/ed Z;ﬂ:l ZZ:bj (/C _ b]‘ + l)ﬁ

Pburst (t|d) -

13)

obtained by by normalizing T Fyyrst(t, d) with the sum of burst
weights across all bursts in the document edit history.

Finally, the third term of Equation 11, P(t|d), describes the
probability of a term ¢ generated by the latest version of the doc-
ument d with Dirichlet prior smoothing, computed using Equation
10. As before, A1, A2, and A3 are tunable parameters that are scaled
so that A1 + A2 + A3 = 1. Having described how RHA can be in-
corporated into two example retrieval models, we now turn to the
specifics of how RHA can be incorporated into a working retrieval
system.

4. SYSTEM IMPLEMENTATION

This section describes the general architecture and relevant com-
ponents of our system: indexing, retrieval, and ranking. To ex-
perimentally evaluate our system, we built a prototype Wikipedia
search engine, by incorporating RHA into state-of-the-art retrieval
models, as described above. Figure 2 depicts the main compo-
nents of the system. In our current implementation, we used the
latest versions of the Wikipedia articles as the retrieved documents,
and the Lemur Toolkit for implementing the retrieval models.

Index Time | [

Query Time ‘

Meta Data Query
Extraction )
& Parsing
— v
.| Retrival
o s Model
— T
Textual Parallel l
Data Burst RHA Ranked
~| —. Identification Index List and
== Reranking
—

Figure 2: An example system implementation using RHA and
associated indexes to facilitate searching of versioned content.

4.1 Wikipedia Parsing

Our Wikipedia parser ignores all the hyperlinks and treats the
anchor text as a regular part of the document. Text inherited from
templates is included as regular document text. We keep track of
the meta-data required for RHA analysis, such as the date the docu-
ment was created or edited, content change with previous revision,
whether it is a minor version, and other editing history information.
Other Wikipedia-specific meta-data such as references, infoboxes,
tables, and category labels are ignored.

4.2 Indexing

To efficiently rank the retrieved results at query time, we built
separate indices for the revision history the latest version of the
document. When indexing the latest revisions of the documents,
the term count and document length are calculated directly, and
this index is used as the corpus for the retrieval task. For the re-
vision history, we build another, augmented, index to support the



RHA-enabled retrieval. Each revision of a document is indexed as
a separate document. This is useful for flexible revision history
scoring and building different retrieval models based on revision
history. The meta data of revisions, such as the birth time of each
revision, is stored separately from the index, for efficiency.

4.3 Retrieval

During retrieval, our system initially operates just like a regu-
lar information retrieval system: given a query, our system will
retrieve potential list of documents from the latest revisions index
for scoring, and passes this initial list to the RHA module. Then,
for each candidate document, the document revision history is re-
trieved. At the same time, the system fetches the burst indicator
values, and calculates the term frequencies for global and local
weighting. For efficiency considerations, global statistics for terms
and other parameters necessary for smoothing are pre-computed.
In the future, we plan to further optimize the retrieval efficiency by
pre-computing the RHA term weights for all documents, instead of
performing RHA analysis and re-ranking at retrieval time.

As the underlying search system we utilized the state of the art
retrieval models for ranking retrieved results with adjusted term
weights. It has been shown in many INEX Ad-Hoc Track experi-
ments [18] that Okapi BM2S5 is one of the most robust and effective
ranking models. One such system is Topx2.0 [28], which has been
provided as reference runs for participants, and used as our base-
line for the experiments in Section 6. We also used the language
modeling based retrieval models, as in many TREC tasks and web
retrieval tasks language modeling has consistently performed better
than other known retrieval models. In all our experiments we used
distance-based likelihood variants of the language model ranking
(provided by the Lemur toolkit), and our model is smoothed with
Dirichlet prior smoothing, with the prior value of o = 1000.

S. EXPERIMENTAL SETUP

We now describe the evaluation metrics (Section 5.1) used to
compare the retrieval methods (Section 5.2) on two standard bench-
mark datasets used in this study (Section 5.3).

5.1 Evaluation Metrics

A common practice of evaluating IR systems is to perform pool-
ing of judged documents for each query/topic [15]. However, this
approach assumes most relevant documents have been judged, and
hence considers non-judged documents to be irrelevant. When each
query has numerous relevant documents, it can happen that the top
N retrieved documents in a new run contain a single judged doc-
ument or even none at all. We address this problem in two dif-
ferent ways. First, Buckley and Voorhees [6] have introduced a
new evaluation metric, bpref, which allows to overlook non-judged
documents and does not require to consider them to be irrelevant
(the metric is computed by analyzing the relative rankings of the
relevant and irrelevant documents). Second, we compute the stan-
dard metrics such as Mean Average Precision (MAP), Normalized
Discounted Cumulative Gain (NDCG) only for the documents for
which we have judgments. Specifically, the metrics are computed
as follows:

e bpref: Let R denote the number of judged relevant documents
and let N denote judged nonrelevant documents. Let D denote
a relevant retrieved document, and let D denote a member of
the first R judged non-relevant documents as retrieved by the
system. Then, bpref is computed as:

| D ranked higher than D|
min(R, N)

bpref = 3 (1 )
D

o MAP: Mean Average Precision is computed as:

Q| ™
MAP(Q) = € Z x Z Precision(Rjk)
QI &= my =
where Q is the set of queries, and m; is the set of ranked results
retrieved for a query j. The average precision for each query j is
computed by adding the precision after each relevant result Ry,
is retrieved.

o NDCG: Normalized Discounted Cumulative Gain metric, intro-
duced by Jarvelin and Kekalainen [17], extends MAP to graded
relevance judgements and places higher weight on relevance in
the top results, while discounting the gain of relevant documents
retrieved in the lower result positions. The value is then normal-
ized by the best possible discounted gain that could be obtained
by perfectly re-ranking the retrieved results.

e R-Precision: the number of relevant documents in the collection
can vary significantly across queries. R-Precision is computed
as precision of the top R documents, where R is the number of
relevant documents in the collection for that query. R-Precision
provides a useful and complementary information to other met-
rics above.

5.2 Methods Compared

We compare the following ranking methods experimentally:

e BM25: standard implementation of BM25 in Lemur, with de-
fault parameter values.

e BM25+RHA: Our extension of BM25 by incorporating the RHA
term frequency as described in Section 3.1.

e LM: standard implementation of the unigram language model
implemented in Lemur, as described above.

e LM+RHA: Our extension of LM by incorporating RHA as de-
scribed in Section 3.2

5.3 Datasets

For our study we used two different sets of query benchmarks.
The first is the collection of topics and relevance judgments from
the INEX 2009 Ad Hoc track evaluation [18]. The second is a set
of TREC ad-hoc queries, with relevance judgments created manu-
ally for this study by volunteers.

INEX data: INEX has become a well established IR evaluation
forum for comparing different retrieval approaches for structured
document retrieval and ranking. Our corpora and benchmarks make
use of the Wikipedia collection developed the recent INEX evalu-
ations [12]. Specifically, we used a susbset of the INEX queries
and relevance judgments for 50 topics from the INEX 2008 ad-hoc
track, and 64 topics for the INEX 2009 ad-hoc track. The topic
titles were used as the queries to retrieve top 1000 documents from
the (November 2009) snapshot of Wikipedia. For each retrieved
document, at most the first 1000 revisions were used for RHA anal-
ysis (some retrieved documents had fewer than 1000 revisions).

TREC data: to test the generality and robustness of our system,
we used an additional query set of 68 topics randomly sampled



from the TREC ad-hoc track. Topic titles were used as queries
to retrieve top 100 documents for each query from the (November
2009) snapshot of Wikipedia, using the BM25 baseline. For each
retrieved document, at most the first 1000 revisions were used for
RHA analysis (some retrieved documents had fewer than 1000 re-
visions). For these queries, human relevance labels from volunteers
were obtained, by pooling the top 10 results for each of the retrieval
methods in Section 5.2.

6. EXPERIMENTAL RESULTS

We now present the experimental results of incorporating RHA
into BM25 and LM models. Specifically, we first describe the pa-
rameter tuning for RHA to optimize the relative importance of the
edit history weights compared to the weights derived from the lat-
est version of the document. We then report results on the INEX
and TREC queries over the datasets described above. We conclude
this section with error analysis and case studies, to gain better intu-
ition about performance of RHA, and suggest directions for future
improvement.

6.1 System Tuning

Parameters A1, A2, and A3 (importance of the final version of
the document, global history, and burst history, respectively) were
tuned by maximizing the bpref metric on the INEX queries and
their relevance judgments.

Table 1 reports results of evaluating RHA on the INEX 2009
queries and judgments, with the best weights chosen for A1, A2, and
A3z parameters using exhaustive search. RHA provides consistent
improvement over the baseline models on all metrics, with roughly
5% relative improvement in bpref and R-Precision, and moderate
improvement of 2% on the MAP metric. The optimal parameter
weights for the BM25+RHA model were A1 = 0.3, A2 = 0.4, and
Az = 0.3. For the LM+RHA model the optimal parameter values
were A1 = 0.3, A2 = 0.2, and A3 = 0.5.

Model bpref MAP R-Precision
BM25 0.354 0.354 0.314
BM25+RHA | 0.375 (+5.93%) | 0.360 (+1.69%) | 0.337 (+7.32%)
LM 0.357 0.370 0.348
LM+RHA 0.372 (+4.20%) | 0.378 (+2.16%) | 0.359 (+3.16%)

Table 1: Retrieval performance improvements when incorpo-
rating RHA into BM25 and LM models (INEX 2009 query set).
Bolded entries indicate the best result for each performance
metric across all retrieval models.

6.2 Results on the INEX data

We now simulate a more realistic retrieval setting where the tun-
ing of the parameters is performed on a separate training set to
avoid overfitting. Specifically, we perform 5-fold cross validation
separately on both the INEX 2008 and INEX 2009 datasets. For
each round of the cross validation, we first tuned parameters ac-
cording to the best value of bpref on the training set, then applied
the well-tuned RHA on the complementary validation set.

Table 2 and Table 3 reports cross-validation results on INEX
2008 and INEX 2009 query sets. The results show that RHA con-
sistently outperforms baseline retrieval methods on bpref and MAP
metrics. For INEX 2008 queries, LM+RHA outperformed the base-
line LM model with 8.7% relative improvement on the bpref metric,
and 4.9% improvement on the MAP metric. We conjecture that the

slight degradation of R-Precision of BM25+RHA could be due to
the optimization process that maximized the bpref metric. Interest-
ingly, the improvement for the INEX 2009 is not as large as it is for
INEX 2008 queries, but is still significant on bpref and R-Precision
metrics. We conjecture that the effects could be explained by the
differences in the queries between the two datasets, as we analyze
in more detail at the end of this section. But, in general, identify-
ing what kind of queries could benefit from RHA is an interesting
future research direction.

Model bpref MAP R-Precision
BM25 0.307 0.281 0.324
BM25+RHA | 0.312 (+1.63%) | 0.291 (+3.56%) | 0.320 (-1.23%)
LM 0.311 0.284 0.330
LM+RHA 0.338 (+8.68%) | 0.298 (+4.93%) | 0.332 (+0.61%)

Table 2: Retrieval performance improvements when incorpo-
rating RHA into BM25 and LM models (INEX 2008 query set
with 5-fold cross validation).

Model bpref MAP R-Precision
BM25 0.354 0.354 0.314
BM25+RHA | 0.363 (+2.54%) | 0.348 (-1.69%) | 0.333 (+6.05%)
LM 0.357 0.370 0.348
LM+RHA 0.366 (+2.52%) | 0.375 (+1.35%) | 0.352 (+1.15%)

Table 3: Retrieval performance improvements when incorpo-
rating RHA into BM25 and LM models (INEX 2009 query set
with 5-fold cross validation).

6.3 Results on the TREC data

Table 4 reports the performance results on TREC queries. The
improvement due to incorporating RHA into the retrieval models
for this benchmark are particularly promising. This is especially
true for BM25+RHA model that exhibits 3.65% relative improve-
ment on MAP, 3.47% improvement on NDCG, and 4.39% improve-
ment on bpref compared to the baseline BM25 model (all improve-
ments are statistically significant with p < 0.01). These results
were obtained on a different dataset (from the INEX dataset used
for tuning), without re-tuning any parameters. Therefore, these re-
sults indicate that RHA is a general and effective method for en-
hancing IR ranking models.

Model bpref MAP NDCG

BM25 0.524 0.548 0.634
BM25+RHA | 0.547% (+4.39%) | 0.568% (+3.65%) | 0.656% (+3.47%)
LM 0.527 0.556 0.645
LM+RHA 0.532 (+0.95%) | 0.567 (+1.98%) | 0.653 (+1.24%)

Table 4: Retrieval performance improvements for TREC
queries, I indicates significant differences at p = 0.01 level with
two-tailed paired t-test.

6.4 Error Analysis and Case Studies

We observed that for some queries, the improvements are quite
large, whereas for others, RHA does not have a noticeable effect,
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Figure 4: Performance improvement on bpref for BM25+RHA (a) and LM+RHA (b) retrieval models for TREC queries.

and for a small fraction of queries, RHA degrades performance.
Figure 3 (a-b) reports the absolute improvement on the bpref met-
rics for individual INEX 2009 queries, when incorporating RHA
into BM25 and LM retrieval models, respectively. RHA on BM25
has a noticeable improvement of bpref on 40% queries, while RHA
on LM helps 34% queries. Some queries, such as "circus acts
skills" and "olive oil health benefit", gain substantial improvements
from RHA. For example, for the query "olive oil health benefit", we
saw relative 20% improvement on BM25+RHA model, and relative
11% on LM+RHA model. However, RHA degrades performance
on some queries, such as the query “earthquake prediction”, which
spans multiple topics including geology, natural disasters. We con-
jecture that the current implementation of RHA is more helpful for
focused queries and hurts for ambiguous queries.

We observe a similar pattern on the TREC dataset. Approxi-
mately 37% of queries are substantially helped by RHA, and an-
other 18% are degraded by RHA. Just as for the INEX queries, we
observe that RHA performs better on focused, unambiguous query
topics. One such query is “Metabolism”, where the task is to iden-
tify documents related to chemical reactions necessary to keep liv-

ing cells healthy. BM25+RHA performed best on this topic, with
the resulting MAP value five times higher than that of the baseline
BM25 model. In contrast, RHA appears to degrade performance
when the original result set is poor. That is, if the original retrieval
result does not contain a sufficient number relevant documents or
the query spans multiple topics, RHA-based re-ranking does not
improve over the original ranking. One such query is “radio waves
and brain cancer” which spans multiple topics. Identifying, and
accounting for such cases automatically is a topic of future work.
Interestingly, BM25+RHA performed better for TREC queries,
whereas LM+RHA generally performed better for INEX queries.
In summary, our experimental results show consistent improve-
ments due to incorporating RHA into retrieval models across dif-
ferent datasets and metrics. It should be pointed out that these
were achieved with little or no tuning of the underlying retrieval
model parameters, and both absolute and relative improvements
could likely be increased with additional tuning and other relevance
feedback techniques. Thus, our results show the value and general-
ity of the RHA model, which, as far as we know, is the first attempt



to incorporate the document authorship process in retrieval models.
Next, we place our contribution in the context of prior work.

7. RELATED WORK

There are several main bodies of prior research that are relevant
to our study, including various approaches to term weighting and
the use of temporal information and other exogenous information
for retrieval and ranking.

Term weighting.

Several alternative directions for term weighting have been pre-
viously explored in the literature. Zaragoza et al. [27] proposed
BM25F, a variant of BM25 [26], which computes term weights de-
pending on which part (field) of the document the term appears
in. Similarly, Ogilvie and Callan [24] used structural markup to
combine document representations within the language modeling
framework. Additional relevant approaches focusing on document
structure include the work by Trotman [29] and Wang and Si [30].

Other approaches explored the use of statistical information of
term occurrence in datasets other than the target retrieval corpus.
Bendersky and Croft [3] identified key concepts in long queries
using term frequency in Google’s 1 Terabyte N-gram corpus, as
well as in a large query log. Subsequently, Lease [22] also studied
term weighting for verbose queries within the Markov random field
model. Although these studies focused on query-side term weight-
ing, in principle similar approaches could be applied to document-
side term weighting as well. Other studies also modified the stan-
dard language modeling approach by considering relationships be-
tween words in a document [7]. A number of studies also developed
new term weighting methods using topic models and cluster-based
language models [20, 23, 31]. To the best of our knowledge, how-
ever, prior publications have not considered the process of docu-
ment creation as a source of knowledge about term importance, a
direction we explored in this paper.

Exploiting temporal information for IR tasks.

Several prior studies focused on versioned document retrieval
models, where the objective is to efficiently access previous ver-
sions of the same document [32, 16]. Research on topic detection
and tracking (TDT) analyzed the evolution of stories and topics
over time [2]. Gabrilovich et al. [13] studied the dynamics of infor-
mation novelty in evolving news stories. Olston and Pandey [25]
introduced the notion of information longevity to devise more so-
phisticated crawling policies. Gruhl et al. [14] and others [19] ana-
lyzed temporal information diffusion in blogosphere, including the
temporal patterns in term popularity (in fact, we adapt one of the
proposed methods in [14] for detecting significant events in a doc-
ument edit history).

Two prior studies are arguably the most relevant to our work.
Elsas and Dumais [10] studied the dynamics of document content
with applications to document ranking. There are several key dif-
ferences between that work and ours. First, Elsas and Dumais only
consider repeated crawls of web documents—as opposed to for-
mally tracked revisions of a Wikipedia page, they consider peri-
odic snapshots, starting from an unknown point in document’s life.
Second, they do not model term evolution, and instead manipulate
three groups of terms defined by their lifespan. Third, we explic-
itly model “significant” events in the document’s lifespan by ana-
lyzing the bursts of change activity. Finally, we provide a general
term frequency model that can be incorporated into any retrieval
model, and not only in LM. More generally, our work could be
used to improve the family of probabilistic retrieval models other

than BM25 [11]. Efron [8] also used temporal information for de-
termining term weights, yet he considered the change over time of
the entire collection, rather than of individual documents.

Exploiting Other Metadata for IR.

In addition to temporal information, CGC provides other rich
metadata that has been exploited for ranking. For example, user
feedback such as votes and author reputation information has been
successfully used for searching community question answering ar-
chives [4] and for blog search [9]. Other useful metadata shown
useful for ranking includes behavioral data such as clickthrough
and browsing information (e.g., [1, 5]).

In contrast to previous work, our RHA model combines the global
and local time-frame analysis of the edit history, with the local
history punctuated by “bursts” in document edit activity. To our
knowledge, our paper is the first attempt to directly incorporate
document authoring history into retrieval models in a general way.

8. CONCLUSIONS AND FUTURE WORK

This paper introduced a novel term weighting scheme that uses
Revision History Analysis (RHA) of the document edit history.
Unlikely previous models, RHA directly captures the document
authoring process when available, and is particularly valuable for
collaboratively generated content, notably Wikipedia documents.
RHA can be naturally incorporated into state of the art retrieval
models, as we demonstrate by showing consistent improvements
that RHA enables for BM25 and LM retrieval models. Other po-
tential applications of RHA include document classification, clus-
tering, and feature selection — as all of these tasks make use of the
term frequency information.

A natural next step is to apply RHA to other types of versioned
content where authorship and edit history information is available,
such as source code repositories, forum threads, and Community
Question Answering archives. A complementary direction is to use
RHA term weighting as a source of additional external evidence for
general web ranking, which we plan to explore in our future work.
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