
Robust Classification of Rare Queries
Using Web Knowledge

Andrei Broder, Marcus Fontoura, Evgeniy Gabrilovich,
Amruta Joshi, Vanja Josifovski, Tong Zhang

Yahoo! Research, 2821 Mission College Blvd, Santa Clara, CA 95054

{broder | marcusf | gabr | amrutaj | vanjaj | tzhang}@yahoo-inc.com

ABSTRACT
We propose a methodology for building a practical robust
query classification system that can identify thousands of
query classes with reasonable accuracy, while dealing in real-
time with the query volume of a commercial web search en-
gine. We use a blind feedback technique: given a query,
we determine its topic by classifying the web search results
retrieved by the query. Motivated by the needs of search ad-
vertising, we primarily focus on rare queries, which are the
hardest from the point of view of machine learning, yet in ag-
gregation account for a considerable fraction of search engine
traffic. Empirical evaluation confirms that our methodology
yields a considerably higher classification accuracy than pre-
viously reported. We believe that the proposed methodology
will lead to better matching of online ads to rare queries and
overall to a better user experience.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval— relevance feedback, search process

General Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
Query classification, Web search, blind relevance feedback

1. INTRODUCTION
In its 12 year lifetime, web search had grown tremen-

dously: it has simultaneously become a factor in the daily
life of maybe a billion people and at the same time an
eight billion dollar industry fueled by web advertising. One
thing, however, has remained constant: people use very
short queries. Various studies estimate the average length of
a search query between 2.4 and 2.7 words, which by all ac-
counts can carry only a small amount of information. Com-
mercial search engines do a remarkably good job in interpret-
ing these short strings, but they are not (yet!) omniscient.
Therefore, using additional external knowledge to augment
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the queries can go a long way in improving the search results
and the user experience.

At the same time, better understanding of query mean-
ing has the potential of boosting the economic underpinning
of Web search, namely, online advertising, via the sponsored
search mechanism that places relevant advertisements along-
side search results. For instance, knowing that the query
“SD450” is about cameras while “nc4200” is about laptops
can obviously lead to more focused advertisements even if no
advertiser has specifically bidden on these particular queries.

In this study we present a methodology for query classifi-
cation, where our aim is to classify queries onto a commercial
taxonomy of web queries with approximately 6000 nodes.
Given such classifications, one can directly use them to pro-
vide better search results as well as more focused ads. The
problem of query classification is extremely difficult owing to
the brevity of queries. Observe, however, that in many cases
a human looking at a search query and the search query re-
sults does remarkably well in making sense of it. Of course,
the sheer volume of search queries does not lend itself to
human supervision, and therefore we need alternate sources
of knowledge about the world. For instance, in the example
above, “SD450” brings pages about Canon cameras, while
“nc4200” brings pages about Compaq laptops, hence to a
human the intent is quite clear.

Search engines index colossal amounts of information, and
as such can be viewed as very comprehensive repositories of
knowledge. Following the heuristic described above, we pro-
pose to use the search results themselves to gain additional
insights for query interpretation. To this end, we employ
the pseudo relevance feedback paradigm, and assume the
top search results to be relevant to the query. Certainly,
not all results are equally relevant, and thus we use elab-
orate voting schemes in order to obtain reliable knowledge
about the query. For the purpose of this study we first dis-
patch the given query to a general web search engine, and
collect a number of the highest-scoring URLs. We crawl the
Web pages pointed by these URLs, and classify these pages.
Finally, we use these result-page classifications to classify
the original query. Our empirical evaluation confirms that
using Web search results in this manner yields substantial
improvements in the accuracy of query classification.

Note that in a practical implementation of our method-
ology within a commercial search engine, all indexed pages
can be pre-classified using the normal text-processing and
indexing pipeline. Thus, at run-time we only need to run
the voting procedure, without doing any crawling or classi-
fication. This additional overhead is minimal, and therefore



the use of search results to improve query classification is
entirely feasible in run-time.

Another important aspect of our work lies in the choice
of queries. The volume of queries in today’s search engines
follows the familiar power law, where a few queries appear
very often while most queries appear only a few times. While
individual queries in this long tail are rare, together they
account for a considerable mass of all searches. Furthermore,
the aggregate volume of such queries provides a substantial
opportunity for income through on-line advertising.1

Searching and advertising platforms can be trained to
yield good results for frequent queries, including auxiliary
data such as maps, shortcuts to related structured informa-
tion, successful ads, and so on. However, the “tail” queries
simply do not have enough occurrences to allow statistical
learning on a per-query basis. Therefore, we need to aggre-
gate such queries in some way, and to reason at the level
of aggregated query clusters. A natural choice for such ag-
gregation is to classify the queries into a topical taxonomy.
Knowing which taxonomy nodes are most relevant to the
given query will aid us to provide the same type of support
for rare queries as for frequent queries. Consequently, in this
work we focus on the classification of rare queries, whose
correct classification is likely to be particularly beneficial.

Early studies in query interpretation focused on query
augmentation through external dictionaries [22]. More re-
cent studies [18, 21] also attempted to gather some ad-
ditional knowledge from the Web. However, these stud-
ies had a number of shortcomings, which we overcome in
this paper. Specifically, earlier works in the field used very
small query classification taxonomies of only a few dozens
of nodes, which do not allow ample specificity for online ad-
vertising [11]. They also used a separate ancillary taxonomy
for Web documents, so that an extra level of indirection had
to be employed to establish the correspondence between the
ancillary and the main taxonomies [18].

The main contributions of this paper are as follows. First,
we build the query classifier directly for the target taxon-
omy, instead of using a secondary auxiliary structure; this
greatly simplifies taxonomy maintenance and development.
The taxonomy used in this work is two orders of magni-
tude larger than that used in prior studies. The empiri-
cal evaluation demonstrates that our methodology for us-
ing external knowledge achieves greater improvements than
those previously reported. Since our taxonomy is consider-
ably larger, the classification problem we face is much more
difficult, making the improvements we achieve particularly
notable. We also report the results of a thorough empiri-
cal study of different voting schemes and different depths of
knowledge (e.g., using search summaries vs. entire crawled
pages). We found that crawling the search results yields
deeper knowledge and leads to greater improvements than
mere summaries. This result is in contrast with prior find-
ings in query classification [20], but is supported by research
in mainstream text classification [5].

2. METHODOLOGY
Our methodology has two main phases. In the first phase,

1In the above examples, “SD450” and “nc4200” represent
fairly old gadget models, and hence there are advertisers
placing ads on these queries. However, in this paper we
mainly deal with rare queries which are extremely difficult
to match to relevant ads.

we construct a document classifier for classifying search re-
sults into the same taxonomy into which queries are to be
classified. In the second phase, we develop a query classifier
that invokes the document classifier on search results, and
uses the latter to perform query classification.

2.1 Building the document classifier
In this work we used a commercial classification taxonomy

of approximately 6000 nodes used in a major US search en-
gine (see Section 3.1). Human editors populated the taxon-
omy nodes with labeled examples that we used as training
instances to learn a document classifier in phase 1.

Given a taxonomy of this size, the computational effi-
ciency of classification is a major issue. Few machine learn-
ing algorithms can efficiently handle so many different clas-
ses, each having hundreds of training examples. Suitable
candidates include the nearest neighbor and the Naive Bayes
classifier [3], as well as prototype formation methods such
as Rocchio [15] or centroid-based [7] classifiers. A recent
study [5] showed centroid-based classifiers to be both ef-
fective and efficient for large-scale taxonomies and conse-
quently, we used a centroid classifier in this work.

2.2 Query classification by search
Having developed a document classifier for the query tax-

onomy, we now turn to the problem of obtaining a classifi-
cation for a given query based on the initial search results
it yields. Let’s assume that there is a set of documents
D = d1 . . . dm indexed by a search engine. The search engine

can then be represented by a function ~f = similarity(q, d)
that quantifies the affinity between a query q and a docu-
ment d. Examples of such affinity scores used in this paper
are rank—the rank of the document in the ordered list of
search results; static score—the score of the goodness of
the page regardless of the query (e.g., PageRank); and dy-
namic score—the closeness of the query and the document.

Query classification is determined by first evaluating con-
ditional probabilities of all possible classes P (Cj |q), and
then selecting the alternative with the highest probability
Cmax = arg maxCj∈C P (Cj |q). Our goal is to estimate the
conditional probability of each possible class using the search
results initially returned by the query. We use the following
formula that incorporates classifications of individual search
results: P (Cj |q) =

∑

d∈D

P (Cj |q, d)·P (d|q) =
∑

d∈D

P (q|Cj , d)

P (q|d)
·P (Cj |d)·P (d|q).

We assume that P (q|Cj , d) ≈ P (q|d), that is, a probabil-
ity of a query given a document can be determined without
knowing the class of the query. This is the case for the
majority of queries that are unambiguous. Counter exam-
ples are queries like ’jaguar’ (animal and car brand) or ’ap-
ple’ (fruit and computer manufacturer), but such ambigu-
ous queries can not be classified by definition, and usually
consists of common words. In this work we concentrate on
rare queries, that tend to contain rare words, be longer, and
match fewer documents; consequently in our setting this as-
sumption mostly holds. Using this assumption, we can write
P (Cj |q) =

∑
d∈D P (Cj |d)·P (d|q). The conditional prob-

ability of a classification for a given document P (Cj |d) is
estimated using the output of the document classifier (sec-
tion 2.1). While P (d|q) is harder to compute, we consider
the underlying relevance model for ranking documents given
a query. This issue is further explored in the next section.



2.3 Classification-based relevance model
In order to describe a formal relationship of classification

and ad placement (or search), we consider a model for using
classification to determine ads (or search) relevance. Let a
be an ad and q be a query, we denote by R(a, q) the relevance
of a to q. This number indicates how relevant the ad a is
to query q, and can be used to rank ads a for a given query
q. In this paper, we consider the following approximation of
relevance function:

R(a, q) ≈ RC(a, q) =
∑

Cj∈C

w(Cj)s(Cj , a)s(Cj , q). (1)

The right hand-side expresses how we use the classifica-
tion scheme C to rank ads, where s(c, a) is a scoring function
that specifies how likely a is in class c, and s(c, q) is a scor-
ing function that specifies how likely q is in class c. The
value w(c) is a weighting term for category c, indicating the
importance of category c in the relevance formula.

This relevance function is an adaptation of the traditional
word-based retrieval rules. For example, we may let cate-
gories be the words in the vocabulary. We take s(Cj , a) as
the word counts of Cj in a, s(Cj , q) as the word counts of
Cj in q, and w(Cj) as the IDF term weighting for word Cj .
With such choices, the method given by (1) becomes the
standard TFIDF retrieval rule.

If we take s(Cj , a) = P (Cj |a), s(Cj , q) = P (Cj |q), and
w(Cj) = 1/P (Cj), and assume that q and a are indepen-
dently generated given a hidden concept C, then we have

RC(a, q) =
∑

Cj∈C

P (Cj |a)P (Cj |q)/P (Cj)

=
∑

Cj∈C

P (Cj |a)P (q|Cj)/P (q) = P (q|a)/P (q).

That is, the ads are ranked according to P (q|a). This rel-
evance model has been employed in various statistical lan-
guage modeling techniques for information retrieval. The in-
tuition can be described as follows. We assume that a person
searches an ad a by constructing a query q: the person first
picks a concept Cj according to the weights P (Cj |a), and
then constructs a query q with probability P (q|Cj) based
on the concept Cj . For this query generation process, the
ads can be ranked based on how likely the observed query
is generated from each ad.

It should be mentioned that in our case, each query and ad
can have multiple categories. For simplicity, we denote by Cj

a random variable indicating whether q belongs to category
Cj . We use P (Cj |q) to denote the probability of q belonging
to category Cj . Here the sum

∑
Cj∈C P (Cj |q) may not equal

to one. We then consider the following ranking formula:

RC(a, q) =
∑

Cj∈C

P (Cj |a)P (Cj |q). (2)

We assume the estimation of P (Cj |a) is based on an existing
text-categorization system (which is known). Thus, we only
need to obtain estimates of P (Cj |q) for each query q.

Equation (2) is the ad relevance model that we consider in
this paper, with unknown parameters P (Cj |q) for each query
q. In order to obtain their estimates, we use search results
from major US search engines, where we assume that the
ranking formula in (2) gives good ranking for search. That
is, top results ranked by search engines should also be ranked
high by this formula. Therefore given a query q, and top K
result pages d1(q), . . . , dK(q) from a major search engine, we
fit parameters P (Cj |q) so that RC(di(q), q) have high scores

for i = 1, . . . , K. It is worth mentioning that using this
method we can only compute relative strength of P (Cj |q),
but not the scale, because scale does not affect ranking.
Moreover, it is possible that the parameters estimated may
be of the form g(P (Cj |q)) for some monotone function g(·) of
the actually conditional probability g(P (Cj |q)). Although
this may change the meaning of the unknown parameters
that we estimate, it does not affect the quality of using the
formula to rank ads. Nor does it affect query classification
with appropriately chosen thresholds. In what follows, we
consider two methods to compute the classification informa-
tion P (Cj |q).

2.4 The voting method
We would like to compute P (Cj |q) so that RC(di(q), q)

are high for i = 1, . . . , K and RC(d, q) are low for a ran-
dom document d. Assume that the vector [P (Cj |d)]Cj∈C is
random for an average document, then the condition that∑

Cj∈C P (Cj |q)2 is small implies that RC(d, q) is also small

averaged over d. Thus, a natural method is to maximize∑K
i=1 wiRC(di(q), q) subject to

∑
Cj∈C P (Cj |q)2 being

small, where wi are weights associated with each rank i:

max
[P (·|q)]


 1

K

K∑

i=1

wi

∑

Cj∈C

P (Cj |di(q))P (Cj |q)− λ
∑

Cj∈C

P (Cj |q)2

 ,

where we assume
∑K

i=1 wi = 1, and λ > 0 is a tuning
regularization parameter. The optimal solution is

P (Cj |q) =
1

2λ

K∑
i=1

wiP (Cj |di(q)).

Since both P (Cj |di(q)) and P (Cj |q) belong to [0, 1], we may
just take λ = 0.5 to align the scale. In the experiment,
we will simply take uniform weights wi. A more complex
strategy is to let w depend on d as well:

P (Cj |q) =
∑

d

w(d, q)g(P (Cj |d)),

where g(x) is a certain transformation of x.
In this general formulation, w(d, q) may depend on factors

other than the rank of d in the search engine results for q.
For example, it may be a function of r(d, q) where r(d, q)
is the relevance score returned by the underlying search en-
gine. Moreover, if we are given a set of hand-labeled training
category/query pairs (C, q), then both the weights w(d, q)
and the transformation g(·) can be learned using standard
classification techniques.

2.5 Discriminative classification
We can treat the problem of estimating P (Cj |q) as a

classification problem, where for each q, we label di(q) for
i = 1, . . . , K as positive data, and the remaining documents
as negative data. That is, we assign label yi(q) = 1 for di(q)
when i ≤ K, and label yi(q) = −1 for di(q) when i > K.

In this setting, the classification scoring rule for a docu-
ment di(q) is linear. Let xi(q) = [P (Cj |di(q))], and w =
[P (Cj |q)], then

∑
Cj∈C P (Cj |q)P (Cj |di(q)) = w ·xi(q). The

values P (Cj |d) are the features for the linear classifier, and
[P (Cj |d)] is the weight vector, which can be computed us-
ing any linear classification method. In this paper, we con-
sider estimating w using logistic regression [17] as follows:

P (·|q) = arg minw

∑
i ln(1 + e−w·xi(q)yi(q)).
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Figure 1: Number of categories by level

3. EVALUATION
In this section, we evaluate our methodology that uses

Web search results for improving query classification.

3.1 Taxonomy
Our choice of taxonomy was guided by a Web advertis-

ing application. Since we want the classes to be useful for
matching ads to queries, the taxonomy needs to be elabo-
rate enough to facilitate ample classification specificity. For
example, classifying all medical queries into one node will
likely result in poor ad matching, as both “sore foot” and
“flu” queries will end up in the same node. The ads appro-
priate for these two queries are, however, very different. To
avoid such situations, the taxonomy needs to provide suf-
ficient discrimination between common commercial topics.
Therefore, in this paper we employ an elaborate taxonomy
of approximately 6000 nodes, arranged in a hierarchy with
median depth 5 and maximum depth 9. Figure 1 shows the
distribution of categories by taxonomy levels. Human edi-
tors populated the taxonomy with labeled queries (approx.
150 queries per node), which were used as a training set; a
small fraction of queries have been assigned to more than
one category.

3.2 Digression: the basics of sponsored search
To discuss our set of evaluation queries, we need a brief in-

troduction to some basic concepts of Web advertising. Spon-
sored search (or paid search) advertising is placing textual
ads on the result pages of web search engines, with ads be-
ing driven by the originating query. All major search en-
gines (Google, Yahoo!, and MSN) support such ads and act
simultaneously as a search engine and an ad agency. These
textual ads are characterized by one or more “bid phrases”
representing those queries where the advertisers would like
to have their ad displayed. (The name “bid phrase” comes
from the fact that advertisers bid various amounts to secure
their position in the tower of ads associated to a query. A
discussion of bidding and placement mechanisms is beyond
the scope of this paper [13].

However, many searches do not explicitly use phrases that
someone bids on. Consequently, advertisers also buy “broad”
matches, that is, they pay to place their advertisements
on queries that constitute some modification of the desired
bid phrase. In broad match, several syntactic modifications
can be applied to the query to match it to the bid phrase,
e.g., dropping or adding words, synonym substitution, etc.
These transformations are based on rules and dictionaries.
As advertisers tend to cover high-volume and high-revenue

queries, broad-match queries fall into the tail of the distri-
bution with respect to both volume and revenue.

3.3 Data sets
We used two representative sets of 1000 queries. Both sets

contain queries that cannot be directly matched to adver-
tisements, that is, none of the queries contains a bid phrase
(this means we eliminated practically all popular queries).

The first set of queries can be matched to at least one ad
using broad match as described above. Queries in the second
set cannot be matched even by broad match, and therefore
the search engine used in our study does not currently dis-
play any advertising for them. In a sense, these are even
more rare queries and further away from common queries.
As a measure of query rarity, we estimated their frequency
in a month worth of query logs for a major US search en-
gine; the median frequency was 1 for queries in Set 1 and 0
for queries in Set 2.

The queries in the two sets differ in their classification
difficulty. In fact, queries in Set 2 are difficult to interpret
even for human evaluators. Queries in Set 1 have on average
3.50 words, with the longest one having 11 words; queries
in Set 2 have on average 4.39 words, with the longest query
of 81 words. Recent studies estimate the average length of
web queries to be just under 3 words2, which is lower than
in our test sets. As another measure of query difficulty,
we measured the fraction of queries that contain quotation
marks, as the latter assist query interpretation by meaning-
fully grouping the words. Only 8% queries in Set 1 and 14%
in Set 2 contained quotation marks.

3.4 Methodology and evaluation metrics
The two sets of queries were classified into the target tax-

onomy using the techniques presented in section 2. Based
on the confidence values assigned, the top 3 classes for each
query were presented to human evaluators. These evalu-
ators were trained editorial staff who possessed knowledge
about the taxonomy. The editors considered every query-
class pair, and rated them on the scale 1 to 4, with 1 mean-
ing the classification is highly relevant and 4 meaning it is
irrelevant for the query. About 2.4% queries in Set 1 and
5.4% queries in Set 2 were judged to be unclassifiable (e.g.,
random strings of characters), and were consequently ex-
cluded from evaluation. To compute evaluation metrics, we
treated classifications with ratings 1 and 2 to be correct, and
those with ratings 3 and 4 to be incorrect.

We used standard evaluation metrics: precision, recall and
F1. In what follows, we plot precision-recall graphs for all
the experiments. For comparison with other published stud-
ies, we also report precision and F1 values corresponding to
complete recall (R = 1). Owing to the lack of space, we
only show graphs for query Set 1; however, we show the
numerical results for both sets in the tables.

3.5 Results
We compared our method to a baseline query classifier

that does not use any external knowledge. Our baseline
classifier expanded queries using standard query expansion
techniques, grouped their terms using a phrase recognizer,
boosted certain phrases in the query based on their sta-
tistical properties, and performed classification using the

2http://www.rankstat.com/html/en/seo-news1-most-people-
use-2-word-phrases-in-search-engines.html
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Figure 2: The effect of external knowledge

nearest-neighbor approach. This baseline classifier is actu-
ally a production version of the query classifier running in a
major US search engine.

In our experiments, we varied values of pertinent parame-
ters that characterize the exact way of using search results.
In what follows, we start with the general assessment of the
effect of using Web search results. We then proceed to ex-
ploring more refined techniques, such as using only search
summaries versus actually crawling the returned URLs. We
also experimented with using different numbers of search
results per query, as well as with varying the number of
classifications considered for each search result. For lack of
space, we only show graphs for Set 1 queries and omit the
graphs for Set 2 queries, which exhibit similar phenomena.

3.5.1 The effect of external knowledge
Queries by themselves are very short and difficult to clas-

sify. We use top search engine results for collecting back-
ground knowledge for queries. We employed two major US
search engines, and used their results in two ways, either
only summaries or the full text of crawled result pages.
Figure 2 and Table 1 show that such extra knowledge con-
siderably improves classification accuracy. Interestingly, we
found that search engine A performs consistently better with
full-page text, while search engine B performs better when
summaries are used.

Engine Context Prec. F1 Prec. F1
Set 1 Set 1 Set 2 Set 2

A full-page 0.72 0.84 0.509 0.721
B full-page 0.706 0.827 0.497 0.665

A summary 0.586 0.744 0.396 0.572
B summary 0.645 0.788 0.467 0.638

Baseline 0.534 0.696 0.365 0.536

Table 1: The effect of using external knowledge

3.5.2 Aggregation techniques
There are two major ways to use search results as addi-

tional knowledge. First, individual results can be classified
separately, with subsequent voting among individual clas-
sifications. Alternatively, individual search results can be
bundled together as one meta-document and classified as
such using the document classifier. Figure 3 presents the
results of these two approaches When full-text pages are

used, the technique using individual classifications of search
results evidently outperforms the bundling approach by a
wide margin. However, in the case of summaries, bundling
together is found to be consistently better than individual
classification. This is because summaries by themselves are
too short to be classified correctly individually, but when
bundled together they are much more stable.
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3.5.3 Full page text vs. summary
To summarize the two preceding sections, background

knowledge for each query is obtained by using either the
full-page text or only the summaries of the top search re-
sults. Full page text was found to be more in conjunction
with voted classification, while summaries were found to be
useful when bundled together. The best results overall were
obtained with full-page results classified individually, with
subsequent voting used to determine the final query classifi-
cation. This observation differs from findings by Shen et al.
[20], who found summaries to be more useful. We attribute
this distinction to the fact that the queries we used in this
study are tail ones, which are rare and difficult to classify.

3.5.4 Varying the number of classes per search result
We also varied the number of classifications per search re-

sult, i.e., each result was permitted to have either 1, 3, or
5 classes. Figure 4 shows the corresponding precision-recall
graphs for both full-page and summary-only settings. As can
be readily seen, all three variants produce very similar re-
sults. However, the precision-recall curve for the 1-class ex-
periment has higher fluctuations. Using 3 classes per search
result yields a more stable curve, while with 5 classes per
result the precision-recall curve is very smooth. Thus, as we
increase the number of classes per result, we observe higher
stability in query classification.

3.5.5 Varying the number of search results obtained
We also experimented with different numbers of search

results per query. Figure 5 and Table 2 present the results
of this experiment. In line with our intuition, we observed
that classification accuracy steadily rises as we increase the
number of search results used from 10 to 40, with a slight
drop as we continue to use even more results (50). This
is because using too few search results provides too little
external knowledge, while using too many results introduces
extra noise.

Using paired t-test, we assessed the statistical significance
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of the improvements due to our methodology versus the
baseline. We found the results to be highly significant (p <
0.0005), thus confirming the value of external knowledge for
query classification.

3.6 Voting versus alternative methods
As explained in Section 2.2, one may use several methods

to classify queries from search engine results based on our
relevance model. As we have seen, the voting method works
quite well. In this section, we compare the performance of
voting top-ten search results to the following two methods:

• A: Discriminative learning of query-classification based
on logistic regression, described in Section 2.5.

• B: Learning weights based on quality score returned
by a search engine. We discretize the quality score
s(d, q) of a query/document pair into {high, medium,
low}, and learn the three weights w on a set of training
queries, and test the performance on holdout queries.
The classification formula, as explained at the end of
Section 2.4, is P (Cj |q) =

∑
d w(s(d, q))P (Cj |d).

Method B requires a training/testing split. Neither voting
nor method A requires such a split; however, for consistency,
we randomly draw 50-50 training/testing splits for ten times,
and report the mean performance ± standard deviation on
the test-split for all three methods. For this experiment,
instead of precision and recall, we use DCG-k (k = 1, 5),
popular in search engine evaluation. The DCG (discounted
cumulated gain) metric, described in [8], is a ranking mea-
sure where the system is asked to rank a set of candidates (in

Number of results Precision F1
baseline 0.534 0.696

10 0.706 0.827
20 0.751 0.857
30 0.796 0.886
40 0.807 0.893
50 0.798 0.887

Table 2: Varying the number of search results

our case, judged categories for each query), and computes

for each query q: DCGk(q) =
∑k

i=1 g(Ci(q))/ log2(i + 1),
where Ci(q) is the i-th category for query q ranked by the
system, and g(Ci) is the grade of Ci: we assign grade of
10, 5, 1, 0 to the 4-point judgment scale described earlier to
compute DCG. The decaying choice of log2(i + 1) is con-
ventional, which does not have particular importance. The
overall DCG of a system is the averaged DCG over queries.
We use this metric instead of precision/recall in this ex-
periment because it can directly handle multi-grade output.
Therefore as a single metric, it is convenient for comparing
the methods. Note that precision/recall curves used in the
earlier sections yield some additional insights not immedi-
ately apparent from the DCG numbers.

Set 1
Method DCG-1 DCG-5
Oracle 7.58± 0.19 14.52± 0.40
Voting 5.28± 0.15 11.80± 0.31

Method A 5.48± 0.16 12.22± 0.34
Method B 5.36± 0.18 12.15± 0.35

Set 2
Method DCG-1 DCG-5
Oracle 5.69± 0.18 9.94± 0.32
Voting 3.50± 0.17 7.80± 0.28

Method A 3.63± 0.23 8.11± 0.33
Method B 3.55± 0.18 7.99± 0.31

Table 3: Voting and alternative methods

Results from our experiments are given in Table 3. The
oracle method is the best ranking of categories for each query
after seeing human judgments. It cannot be achieved by any
realistic algorithm, but is included here as an absolute up-
per bound on DCG performance. The simple voting method
performs very well in our experiments. The more com-
plicated methods may lead to moderate performance gain
(especially method A, which uses discriminative training in
Section 2.5). However, both methods are computationally
more costly, and the potential gain is minor enough to be
neglected. This means that as a simple method, voting is
quite effective.

We can observe that method B, which uses quality score
returned by a search engine to adjust importance weights
of returned pages for a query, does not yield appreciable
improvement. This implies that putting equal weights (vot-
ing) performs similarly as putting higher weights to higher
quality documents and lower weights to lower quality doc-
uments (method B), at least for the top search results. It
may be possible to improve this method by including other
page-features that can differentiate top-ranked search re-
sults. However, the effectiveness will require further inves-



tigation which we did not test. We may also observe that
the performance on Set 2 is lower than that on Set 1, which
means queries in Set 2 are harder than those in Set 1.

3.7 Failure analysis
We scrutinized the cases when external knowledge did

not improve query classification, and identified three main
causes for such lack of improvement. (1)Queries containing
random strings, such as telephone numbers — these queries
do not yield coherent search results, and so the latter cannot
help classification (around 5% of queries were of this kind).
(2) Queries that yield no search results at all; there were 8%
such queries in Set 1 and 15% in Set 2. (3) Queries corre-
sponding to recent events, for which the search engine did
not yet have ample coverage (around 5% of queries). One
notable example of such queries are entire names of news
articles—if the exact article has not yet been indexed by
the search engine, search results are likely to be of little use.

4. RELATED WORK
Even though the average length of search queries is steadi-

ly increasing over time, a typical query is still shorter than
3 words. Consequently, many researchers studied possible
ways to enhance queries with additional information.

One important direction in enhancing queries is through
query expansion. This can be done either using electronic
dictionaries and thesauri [22], or via relevance feedback tech-
niques that make use of a few top-scoring search results.
Early work in information retrieval concentrated on manu-
ally reviewing the returned results [16, 15]. However, the
sheer volume of queries nowadays does not lend itself to
manual supervision, and hence subsequent works focused
on blind relevance feedback, which basically assumes top
returned results to be relevant [23, 12, 4, 14].

More recently, studies in query augmentation focused on
classification of queries, assuming such classifications to be
beneficial for more focused query interpretation. Indeed,
Kowalczyk et al. [10] found that using query classes im-
proved the performance of document retrieval.

Studies in the field pursue different approaches for ob-
taining additional information about the queries. Beitzel
et al. [1] used semi-supervised learning as well as unlabeled
data [2]. Gravano et al. [6] classified queries with respect
to geographic locality in order to determine whether their
intent is local or global.

The 2005 KDD Cup on web query classification inspired
yet another line of research, which focused on enriching
queries using Web search engines and directories [11, 18, 20,
9, 21]. The KDD task specification provided a small taxon-
omy (67 nodes) along with a set of labeled queries, and posed
a challenge to use this training data to build a query classi-
fier. Several teams used the Web to enrich the queries and
provide more context for classification. The main research
questions of this approach the are (1) how to build a doc-
ument classifier, (2) how to translate its classifications into
the target taxonomy, and (3) how to determine the query
class based on document classifications.

The winning solution of the KDD Cup [18] proposed us-
ing an ensemble of classifiers in conjunction with searching
multiple search engines. To address issue (1) above, their so-
lution used the Open Directory Project (ODP) to produce
an ODP-based document classifier. The ODP hierarchy was
then mapped into the target taxonomy using word matches

at individual nodes. A document classifier was built for
the target taxonomy by using the pages in the ODP tax-
onomy that appear in the nodes mapped to the particular
target node. Thus, Web documents were first classified with
respect to the ODP hierarchy, and their classifications were
subsequently mapped to the target taxonomy for query clas-
sification.

Compared to this approach, we solved the problem of doc-
ument classification directly in the target taxonomy by us-
ing the queries to produce document classifier as described
in Section 2. This simplifies the process and removes the
need for mapping between taxonomies. This also stream-
lines taxonomy maintenance and development. Using this
approach, we were able to achieve good performance in a
very large scale taxonomy. We also evaluated a few alter-
natives how to combine individual document classifications
when actually classifying the query.

In a follow-up paper [19], Shen et al. proposed a frame-
work for query classification based on bridging between two
taxonomies. In this approach, the problem of not having
a document classifier for web results is solved by using a
training set available for documents with a different taxon-
omy. For this, an intermediate taxonomy with a training set
(ODP) is used. Then several schemes are tried that estab-
lish a correspondence between the taxonomies or allow for
mapping of the training set from the intermediate taxonomy
to the target taxonomy. As opposed to this, we built a doc-
ument classifier for the target taxonomy directly, without
using documents from an intermediate taxonomy. While we
were not able to directly compare the results due to the use
of different taxonomies (we used a much larger taxonomy),
our precision and recall results are consistently higher even
over the hardest query set.

5. CONCLUSIONS
Query classification is an important information retrieval

task. Accurate classification of search queries is likely to
benefit a number of higher-level tasks such as Web search
and ad matching. Since search queries are usually short, by
themselves they usually carry insufficient information for ad-
equate classification accuracy. To address this problem, we
proposed a methodology for using search results as a source
of external knowledge. To this end, we send the query to a
search engine, and assume that a plurality of the highest-
ranking search results are relevant to the query. Classifying
these results then allows us to classify the original query
with substantially higher accuracy.

The results of our empirical evaluation definitively con-
firmed that using the Web as a repository of world knowl-
edge contributes valuable information about the query, and
aids in its correct classification. Notably, our method ex-
hibits significantly higher accuracy than methods described
in prior studies3 Compared to prior studies, our approach
does not require any auxiliary taxonomy, and we produce
a query classifier directly for the target taxonomy. Fur-
thermore, the taxonomy used in this study is approximately
2 orders of magnitude larger than that used in prior works.

We also experimented with different values of parameters
that characterize our method. When using search results,
one can either use only summaries of the results provided by

3Since the field of query classification does not yet have es-
tablished and agreed upon benchmarks, direct comparison
of results is admittedly tricky.



the search engine, or actually crawl the results pages for even
deeper knowledge. Overall, query classification performance
was the best when using the full crawled pages (Table 1).
These results are consistent with prior studies [5], which
found that using full crawled pages is superior for document
classification than using only brief summaries. Our findings,
however, are different from those reported by Shen et al. [19],
who found summaries to yield better results. We attribute
our observations to using a more elaborate voting scheme
among the classifications of individual search results, as well
as to using a more difficult set of rare queries.

In this study we used two major search engines, A and B.
Interestingly, we found notable distinctions in the quality of
their output. Notably, for engine A the overall results were
better when using the full crawled pages of the search re-
sults, while for engine B it seems to be more beneficial to use
the summaries of results. This implies that while the quality
of search results returned by engine A is apparently better,
engine B does a better work in summarizing the pages.

We also found that the best results were obtained by us-
ing full crawled pages and performing voting among their
individual classifications. For a classifier that is external to
the search engine, retrieving full pages may be prohibitively
costly, in which case one might prefer to use summaries to
gain computational efficiency. On the other hand, for the
owners of a search engine, full page classification is much
more efficient, since it is easy to preprocess all indexed pages
by classifying them once onto the (fixed) taxonomy. Then,
page classifications are obtained as part of the meta-data
associated with each search result, and query classification
can be nearly instantaneous.

When using summaries it appears that better results are
obtained by first concatenating individual summaries into a
meta-document, and then using its classification as a whole.
We believe the reason for this observation is that summaries
are short and inherently noisier, and hence their aggregation
helps to correctly identify the main theme. Consistent with
our intuition, using too few search results yields useful but
insufficient knowledge, and using too many search results
leads to inclusion of marginally relevant Web pages. The
best results were obtained when using 40 top search hits.

In this work, we first classify search results, and then use
their classifications directly to classify the original query.
Alternatively, one can use the classifications of search results
as features in order to learn a second-level classifier. In
Section 3.6, we did some preliminary experiments in this
direction, and found that learning such a secondary classifier
did not yield considerably advantages. We plan to further
investigate this direction in our future work.

It is also essential to note that implementing our method-
ology incurs little overhead. If the search engine classifies
crawled pages during indexing, then at query time we only
need to fetch these classifications and do the voting.

To conclude, we believe our methodology for using Web
search results holds considerable promise for substantially
improving the accuracy of Web search queries. This is par-
ticularly important for rare queries, for which little per-
query learning can be done, and in this study we proved
that such scarceness of information could be addressed by
leveraging the knowledge found on the Web. We believe
our findings will have immediate applications to improving
the handling of rare queries, both for improving the search
results as well as yielding better matched advertisements.

In our further research we also plan to make use of session
information in order to leverage knowledge about previous
queries to better classify subsequent ones.
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