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ABSTRACT
The business of Web search, a $10 billion industry, relies
heavily on sponsored search, whereas a few carefully-selected
paid advertisements are displayed alongside algorithmic search
results. A key technical challenge in sponsored search is to
select ads that are relevant for the user’s query. Identifying
relevant ads is challenging because queries are usually very
short, and because users, consciously or not, choose terms
intended to lead to optimal Web search results and not to
optimal ads. Furthermore, the ads themselves are short and
usually formulated to capture the reader’s attention rather
than to facilitate query matching.

Traditionally, matching of ads to queries employed stan-
dard information retrieval techniques using the bag of words
approach. Here we propose to go beyond the bag of words,
and augment both queries and ads with additional knowledge-
rich features. We use Web search results initially returned
for the query to create a pool of relevant documents. Clas-
sifying these documents with respect to an external taxon-
omy and identifying salient named entities give rise to two
new feature types. Empirical evaluation based on over 9,000
query-ad pairwise judgments confirms that using augmented
queries produces highly relevant ads. Our methodology also
relaxes the requirement for each ad to explicitly specify the
exhaustive list of queries (“bid phrases”) that can trigger it.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms: Algorithms, economics, performance

Keywords: Online advertising, relevance, Web search

1. INTRODUCTION
The Web has become an integral part of our lives: peo-

ple around the world use it for information, entertainment,
shopping, communication, and many other activities. Navi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’08, October 26–30, 2008, Napa Valley, California, USA.
Copyright 2008 ACM 978-1-59593-991-3/08/10 ...$5.00.

gating the Web without search engines would be impossible
and more than 2 billion searches are performed every day [9].

The prevailing business model of Web search relies heavily
on sponsored search, whereas a few carefully-selected paid
advertisements are displayed alongside algorithmic (or or-
ganic) search results. There is a fine but important line
between placing ads reflecting the query intent, and plac-
ing unrelated ads: users may find the former beneficial, as
an additional source of information or an additional Web
navigation facility, while the latter are likely to annoy the
searchers and hurt the user experience (we discuss Web ad-
vertising in more detail in Section 2).

Identifying relevant ads is far from trivial, mainly be-
cause search queries are so short (the average query is only
about 2.5 words long), and because users, consciously or
not, choose query terms intended to retrieve the best search
results rather than the best ads.

In the realm of Web search (and more generally within the
field of information retrieval), there have been a number of
studies on query augmentation [1, 3, 31, 48, 50], but as far
as we know, no studies focused on query expansion for ad
search. The latter task is notably more difficult than gen-
eral query expansion since ads are typically quite short and
are often formulated as abrupt, non-grammatical phrases in-
tended to capture reader’s attention rather than to facilitate
query matching. Consequently, the usefulness of the ad cor-
pus itself for query expansion is limited, hence we opted to
explore ways of query augmentation using external sources
of knowledge, including Web search results and a large tax-
onomy of commercial topics.

Given the original query (called the Web query in the se-
quel), we first send it to a Web search engine, and then use
the returned top-scoring pages to gather additional knowl-
edge about the query. We use this knowledge to create an
augmented query (called the ad query in the sequel), which
is evaluated against the ad corpus to retrieve relevant ads
for the original Web query. Of course, short queries are also
difficult for Web search; however, modern search engines use
a huge amount of additional knowledge such as past query
statistics, link analysis, page popularity, anchor text, and
click-through data, and thus can return decent results even
for very short inputs. Thus, the highest-scoring search re-
sults are often quite good, and so we use them for query
augmentation within a blind relevance feedback approach.

Such additional knowledge becomes invaluable when pro-
cessing malformed queries, such as misspelled ones or queries
in which several words are glued together. For example,
when the user types a misspelled query “car insuance”, the



search engine automatically corrects the spelling mistake
and the search results for the corrected query can also be
used for matching ads.

Historically, the mainstream approach to textual docu-
ment retrieval has been based on the bag of words paradigm,
where both the query and the documents to be retrieved are
represented as vectors of word-based features [41], whose val-
ues are computed using a variant of the TFIDF weighting
scheme [39]. In this work we go beyond the bag of words by
using search results returned for the Web query to construct
three classes of features that together form the ad query. For
the first class of features, we pool together the words (un-
igrams) that occur within the result pages, and select the
most representative ones to be used in addition to the origi-
nal query words. The second class of features is based on our
previous work on query classification using Web search re-
sults [7]. In that work, we classified the search results with
respect to a large external taxonomy of over 6,000 nodes,
and then used voting to determine the best classifications
for the original query. Here we apply a similar technique to
classify the Web query into relevant classes, which then de-
fine new features of the ad query. The third class of features
is defined by a large lexicon of phrases, built by analyzing
the set of all Web pages crawled by the underlying search
engine. We identify all the entries of this lexicon that appear
in the search results for the Web query, and then retain the
most representative ones as additional features.

Ads undergo a similar processing, consisting of word anal-
ysis, taxonomy classification, and extraction of lexicon phra-
ses. When both queries and ads are represented in this aug-
mented space of features, their matching amounts to com-
puting conventional similarity metrics such as cosine [53].

The contributions of this study are fourfold:

• We propose a methodology for cross-corpora query ex-
pansion for sponsored search, where we use one corpus
(the Web) to augment queries to be evaluated against
another corpus (the ads). While cross-corpora expan-
sion techniques have been studied previously, to the
best of our knowledge this is the first study to apply
such methods to ad selection in sponsored search.

• We propose methods for defining a richer representa-
tion of both queries and ads by constructing new fea-
tures based on external knowledge.

• In order to facilitate matching of relevant ads to queries
under the bag of words approach, advertisers normally
pre-define the queries (“bid phrases”) for which it would
be desirable to display a given ad. This approach, how-
ever, restricts the ad display to a relatively small set
of queries. In this work we relax the requirement that
advertisers explicitly specify “bid phrases”; instead, we
use the entire contents of the ad to identify queries for
which it should be shown.

• We present an evaluation of an end-to-end method-
ology for ad selection in sponsored search, based on
query expansion coupled with an inverted ad index
that can evaluate long queries.

Using the classification-based and phrase-based features
facilitates thematic matching that goes beyond the simple
bag of words approach and captures deeper semantic sim-
ilarity. Our experimental evaluation confirms that using

these additional features greatly improves the accuracy of
ad matching, resulting in more relevant ads.

2. BACKGROUND: TEXTUAL ADVERTIS-
ING ON THE WEB

A large part of the Web advertising market consists of tex-
tual ads, the ubiquitous short text messages usually marked
as “sponsored links”. There are two main channels for dis-
tributing such ads. Sponsored search (or paid search adver-
tising) places ads on the result pages of a Web search engine,
where ads are selected to be relevant to the search query (see
[16] for a brief history of the subject). All major Web search
engines (Google, Microsoft, Yahoo!) support sponsored ads
and act simultaneously as a Web search engine and an ad
search engine. Content match (or contextual advertising)
places ads on third-party Web pages. Today, almost all
of the for-profit non-transactional Web sites1 rely at least
to some extent on contextual advertising revenue. Content
match supports sites that range from individual bloggers and
small niche communities to large publishers such as major
newspapers.

In this paper we focus on sponsored search. However,
we believe that additional knowledge-based features are also
likely to be beneficial for content match, and plan to inves-
tigate this direction in future work.

Sponsored search is an interplay of three entities. The
advertiser provides the supply of ads. Usually the activ-
ity of the advertisers is organized around campaigns, which
are defined by a set of ads with a particular temporal and
thematic goal (e.g., sale of digital cameras during the hol-
iday season). As in traditional advertising, the goal of the
advertisers can be broadly defined as promotion of products
or services. The search engine provides “real estate” for
placing ads (i.e., allocates space on search results pages),
and selects ads that are relevant to the user’s query. Users
visit the Web pages and interact with the ads.

The prevalent pricing model for textual ads is that the
advertisers pay for every click on the advertisement (pay-
per-click or PPC). There are also other models, such as pay-
per-impression, where the advertiser pays for the number of
exposures of an ad, and pay-per-action, where the advertiser
pays only if the ad leads to a sale or similar completed trans-
action. In this paper we deal with the PPC model, which is
the one most often used in practice.

The amount paid by the advertiser for each sponsored
search click is usually determined by an auction process [14].
The advertisers place bids on a search phrase, and their po-
sition in the column of ads displayed on the search results
page is determined by their bid. Thus, each ad is annotated
with one or more bid phrases. In addition to the bid phrase,
an ad also contains a title usually displayed in bold font,
and a creative, which is the few lines of text, usually shorter
than 120 characters, displayed on the page. Naturally, each
ad contains a URL to the advertised Web page, called the
landing page.

In the model currently used by all the major search en-
gines, bid phrases serve a dual purpose: they explicitly spec-
ify queries that the ad should be displayed for and simulta-
neously put a price tag on a click event. Obviously, these
price tags could be different for different queries. For ex-

1Non-transactional sites are those that do not sell anything
directly.



ample, a contractor advertising his services on the Internet
might be willing to pay a small amount of money when his
ads are clicked from general queries such as “home remod-
eling”, but higher amounts if the ads are clicked from more
focused queries such as“hardwood floors”or “laminate floor-
ing”. Most often, ads are shown for queries that are expressly
listed among the bid phrases for the ad, thus resulting in an
exact match (i.e., identity) between the query and the bid
phrase. However, it might be difficult (or even impossible)
for the advertiser to list all the relevant queries ahead of
time. Therefore, search engines also have the ability to ana-
lyze queries and modify them slightly in an attempt to match
pre-defined bid phrases. This approach, called broad (or ad-
vanced) match, facilitates more flexible ad matching, but is
also more error-prone, and only some advertisers opt for it.
Nonetheless, bid phrases remain a mandatory component of
the ad definition.

Given a query q, the revenue from a click can be estimated
as

R =
∑

i=1..k

P (click|q, ai) · price(ai, i),

where k is the number of ads displayed on the page with
search results for q and price(ai, i) is the click price of the
ad ai at position i. The price in this model depends on the
set of ads presented on the results page. Several models have
been proposed to determine this price, most of them based
on generalizations and variants of second price auctions (for
more details, see [14] and references therein). For simplicity,
in this paper we ignore the pricing model and concentrate on
finding ads that will maximize the first term of the product,
that is, we search for

arg max
i

P (click|q, ai).

Furthermore, we assume that the probability of a click for a
given ad and query is determined by the ad’s relevance score
with respect to the query, thus ignoring the positional effect
of the ad placement on the results page. We assume that
this is an orthogonal factor to the relevance component, and
could be easily incorporated in the model.

3. METHODOLOGY
In this section we present our methodology for using the

Web for constructing new features for representing queries
and ads. This approach allows us to leverage external knowl-
edge available to search engines in order to create more infor-
mative features for matching ads to queries. Furthermore,
by using features that characterize the entire ad rather than
only its bid phrase, we relax the requirement for advertisers
to explicitly specify bid phrases.

3.1 System overview
The input to our system is a search (or “Web”) query, and

the output is a set of ads that are relevant to this query.
Processing the input query involves two main phases. In
the first phase, we conduct a Web search with the original
query, and analyze the top-scoring results obtained for it.
We use these search results to augment the Web query and
construct an ad query, which is then evaluated against an
index of ads. Figure 1 presents a high-level view of the
information flow.

We represent ad queries and ads in three distinct feature
spaces that are formed using three different kinds of features,
namely, unigrams, classes, and phrases. Thus, each object is

Web query

Web search

results

Ad query

Ads

Figure 1: High-level information flow

represented as a feature vector, which is composed of three
sub-vectors, each of which is normalized and scored sepa-
rately. Let q be a query, then its feature vector is defined as
follows: vq = 〈uq1, . . . , uq|U|, cq1, . . . , cq|C|, pq1, . . . , pq|P |〉,
where U , C and P are the sets of unigrams, classes and
phrase features, respectively. Given an ad a and its vector
va = 〈ua1, . . . , ua|U|, ca1, . . . , ca|C|, pa1, . . . , pa|P |〉, we com-
pute its score for a query using cosine similarity metric:

score(q, a) = α
∑

i=1..|U|
uqi ·uai+β

∑

j=1..|C|
cqj ·caj +γ

∑

k=1..|P |
pqk ·pak,

(1)

where α, β and γ are the weights reflecting the importance
of the different feature classes.

Figure 2 gives an overview of the system architecture. Al-
though we currently use three different kinds of features,
our modular approach could easily incorporate additional
feature types, which could be built using additional knowl-
edge sources.

3.2 Feature construction
Our primary source of augmenting the Web query and

constructing new features is the set of top-scoring search
results for the original Web query. We adopt the blind rele-
vance feedback approach, and assume that most of the top-
scoring results are relevant to the query to some extent. Let
R = {r1, . . . , r|N|} be a set of top search results.

3.2.1 Bag of words
To construct word-level unigram features U we first pool

together all the individual words that occur in search re-
sults pages. Taking all the words that occur in any of the
result pages would necessarily be very noisy, hence we use
feature selection to represent the query only with features
that are truly characteristic of it. Since we employ the blind
relevance approach, we do not have any kind of labeling of
search results, and hence the feature selection step should
be unsupervised. Therefore, we cannot use inherently su-
pervised methods like information gain, and resort to using
metrics based on document frequency and TFIDF. It should
be noted, however, that studies in (supervised) text catego-
rization confirm that feature selection based on document
frequency yields results that are on par with those based on
information gain [42].

Having selected a desired number of features, we assign
their values using the TFIDF scheme [39], where we use
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Figure 2: Architecture overview

logarithmic term frequency and IDF computed over the ad
corpus. Precisely, feature weights are computed as uqi =
(1 + log(tf))log NA

NA(uqi)
, where tf is the number of occur-

rences of uqi in the pooled search results ∪iri, NA is the to-
tal number of ads, and NA(uqi) is the number of ads whose
text contains the word uqi. Finally, unigram weights un-
dergo cosine normalization: uq′i = uqi√∑

i=1..|U| uq2
i

.

3.2.2 Query classification
If a query and an ad are highly related but use different

vocabulary, the bag of words matching will be insufficient to
capture their relatedness. While this problem is alleviated
to some degree by expanding the query with search results,
it cannot be completely solved this way. We use text clas-
sification with respect to an external taxonomy in order to
identify commonalities between related but different vocab-
ularies. To achieve this aim, we use a large taxonomy of
commercial-intent topics, and build a document classifier
that is capable of mapping an input fragment of text into
a number of relevant classes. We then use these classes to
create new features for queries and ads. Doing so not only
allows us to generalize from the level of individual words to
higher-level abstractions, but also explicitly benefits from
the external knowledge that was used to build this auxiliary
classifier.

Our choice of taxonomy was guided by a Web advertis-
ing application. Since we want the classes to be useful for
matching ads, the taxonomy needs to be elaborate enough
to facilitate ample classification specificity. For example,
classifying all medical queries into one node will likely result
in poor ad matching, as both “sore foot” and “flu” queries
will end up in the same node. The ads appropriate for these
two queries are, however, very different. To avoid such sit-
uations, the taxonomy needs to provide sufficient discrimi-

nation between common commercial topics. Therefore, we
employed a large taxonomy of approximately 6, 000 nodes,
arranged in a hierarchy with median depth 5 and maximum
depth 9. Human editors populated the taxonomy with la-
beled bid phrases of actual ads (approx. 150 phrases per
node), which were used as a training set; a small fraction of
queries have been assigned to more than one category. We
used the same taxonomy in our earlier work [7], where it is
described in more detail.

Few machine learning algorithms can efficiently handle so
many different classes and training examples. Suitable can-
didates include the nearest neighbor and the Naive Bayes
classifier [13], as well as prototype formation methods such
as Rocchio [37] or centroid-based [19] classifiers. We used
the latter method to implement our text classifier. For each
taxonomy node we concatenated all the phrases associated
with this node into a single meta-document. We then com-
puted a centroid for each node by summing up the TFIDF
values of individual terms, and normalizing by the number
of phrases in the class:

~cj =
1

|Cj |
∑

~p∈Cj

~p

‖~p‖ ,

where ~cj is the centroid for class Cj and p iterates over the
phrases in a particular class.

The classification is based on the cosine of the angle be-
tween the input document and the centroid meta-documents:

Cmax = arg max
Cj∈C

~cj

‖~cj‖ ·
~dj

‖~dj‖

= arg max
Cj∈C

∑
i∈|F | c

i· di

√∑
i∈|F |(c

i)2
√∑

i∈|F |(d
i)2

,

where F is the bag of words, and ci and di represent the
weight of the ith feature in the class centroid and the doc-
ument, respectively. The scores are normalized by the doc-
ument and centroid lengths to make the scores of different
documents comparable.

Given the search results produced for the Web query, we
classify each result page and then perform voting among
them to select several classifications that best characterize
the query. As reported in our previous work [7], the accu-
racy of this query classification approach is quite high with
Precision = 0.807 and F1 = 0.893 at 100% recall. Follow-
ing [17], we construct new features based on these immediate
classifications as well as their ancestors in the taxonomy (the
weight of each ancestor feature was decreased with a damp-
ing factor of 0.5). The weights of classification features are
defined by the confidence scores assigned by the document
classifier. The only transformation applied to these scores is
cosine normalization.

3.2.3 Phrase extraction
For phrase extraction, we used a proprietary variant of Al-

tavista’s Prisma refinement tool [2] developed in-house. This
tool includes two components, an online and an offline one.
Given a fragment of text, the online component analyzes it
to identify named entities and other stable phrases. This
component has been integrated into the crawling and index-
ing pipeline of the search engine, and is routinely invoked on
all the pages included in the search engine index. The offline



component collectively analyzes the phrases found in all the
crawled pages, and retains the most significant ones based on
their statistical properties. These phrases can then be used
as a restricted lexicon for indexing any piece of text they
occur in. Approximately 10 million phrases (called Prisma
terms in the sequel) are selected for the English language.

Given the set of search results, we first identify Prisma
terms that occur in them, and then perform feature selec-
tion to retain the most characteristic ones. Both feature
selection and TFIDF-based feature weighting are performed
similarly to the processing of unigrams explained in Sec-
tion 3.2.1. Other feature weighting schemes, notably, BM25
[36] have been reported in the literature, and we intend to
report their application to sponsored search advertising in
our future work.

At the end of the feature construction process we ob-
tain an augmented query represented using three kinds of
features—unigrams, classes, and Prisma terms. In contrast
to a few words that comprised the original Web query, these
additional features have been constructed by collectively an-
alyzing the set of search results produced for the original
Web query. The augmented ad query is then evaluated
against the ad index to retrieve relevant ads.

3.3 Ad indexing and retrieval
The ads are available ahead of time and the ad processing

is performed offline over the Hadoop grid-computing infras-
tructure (http://lucene.apache.org/hadoop/). We ana-
lyze the ad text and construct the same three types of fea-
tures that we do for queries, namely, unigrams, classes, and
Prisma terms. At this moment, we do not analyze the con-
tents of the Web page pointed at by the ad (the landing
page), as in our previous work we found that it is often too
noisy.

In an online advertising system, the number of ads can
easily reach tens and even hundreds of millions. Therefore,
to facilitate fast ad search and retrieval we use an inverted
index of ads. Finding relevant ads for the query amounts to
efficiently evaluating the scores of candidate ads as defined
by Equation (1), and then retrieving the desired number of
highest-scoring ads.

As opposed to traditional search engines where the queries
are short and documents are long, in our case ad queries are
composed of Web-based features (as explained in the pre-
ceding section), and are fairly long. An ad query has on
average 100–200 features, more than the number of features
constructed for some ads. Therefore, we are not looking for
a subsumption of the query vector by the ad vector; instead,
we search for ads that are most similar to the query. To ef-
ficiently perform the similarity search over the ad space, we
have adapted the WAND algorithm [8] to work with longer
queries. WAND uses a branch-and-bound approach to re-
duce the number of ads considered. For each query feature,
one cursor is opened to traverse the posting lists. The cur-
sors are moved based on the upper bound of the score of the
document that the cursor currently points at. Only docu-
ments with upper bounds higher than the minimal score in
the current candidate set are considered.

3.4 Implementation efficiency
The system described in this paper used our experimental

prototype where search result pages are crawled and ana-
lyzed at query time. However, in a real-life system, feature

extraction can be performed at page indexing time. Since
the set of possible search results is final, the search engine
can analyze each Web page and classify it at the time the
page is added to the search index. At query time, the search
engine just needs to pass the precomputed features of top-
scoring search results to the advertising subsystem. Thus, at
runtime we do not have to pay the penalty of page crawling
and feature extraction. This way, the approach presented
in this paper can be practically implemented to conform
to the ad serving latency requirements (several hundreds of
milliseconds).

4. EMPIRICAL EVALUATION
We implemented our methodology for feature construc-

tion using relevance feedback in an ad matching platform
named Onyx. In this section we report the results of its
experimental evaluation.

4.1 Experimental methodology
We start with describing the implementation details and

the datasets we used, and then proceed to presenting the
results of empirical evaluation of our methodology.

4.1.1 Implementation details
Given a query, we run it through the Yahoo Web search

engine, and keep the top 40 URL results (this number was
empirically determined to be optimal for query classification
[7]). We crawl the returned search results, tokenize their
text, remove stop words, and stem the remaining words with
the Porter stemmer [32]. For both unigrams and Prisma
terms we selected up to 50 features of each type, while we
evaluated feature selection based on document frequency
(DF) as well as based on TFIDF weights. To construct clas-
sification features, we first obtained top 5 classes for each
individual search result, and then performed voting to select
5 best classes for the query. We constructed features based
on these 5 classes as well as their ancestors in the hierar-
chy. The optimal number of classes per query was obtained
through validation on a held-out dataset.

We implemented the following four system settings (where
α, β, γ are the relative weights for the different feature types;
see Equation (1)):

Onyx1 α = 1.0, β = 0.5, γ = 0.5, feature selection = DF

Onyx2 α = 0.5, β = 1.0, γ = 0.5, feature selection = DF

Onyx3 α = 0.5, β = 0.5, γ = 1.0, feature selection = DF

Onyx4 α = 1.0, β = 0.5, γ = 0.5, feature selection = TFIDF

The rationale behind the first three settings is to empha-
size different feature types. The choices of α, β, γ values
in the three settings above were designed to provide good
sampling of the parameter space. Given the human rel-
evance judgments (explained in the following section), we
also subsequently tuned the α, β and γ values for optimal
performance. The fourth setting was used to evaluate the
TFIDF formula as a feature selection metric.

Throughout the paper, most graphs only display the per-
formance of the first system setting (Onyx 1), which we ab-
breviate as simply “Onyx”. The performance of all the four
settings is presented in Figure 4.



4.1.2 Data description
We used a set of 700 Web queries, which has been con-

structed in the following way. We started with a set of all
queries received by the Yahoo Web search engine during
the week of July 23–29, 2007. We divided the 10 million
most frequent queries into deciles by frequency, and ran-
domly sampled 50 queries from each decile. We furthermore
sampled 200 queries from the distribution tail (beyond the
10 million most frequent ones).

Each query has been matched to up to three ads using
each of the above four system settings, resulting in over 9,000
query-ad pairings (some queries could only be matched to
fewer than three ads). A team of six analysts, all of whom
hold college degrees and have a high command of the English
language, provided relevance judgments for each query-ad
pair using the following scale: Perfect, Certainly Attractive,
Probably Attractive, Somewhat Attractive, Probably Not
Attractive, and Certainly Not Attractive.

In order to compute the standard metrics of precision and
recall, we converted the above judgments to binary by con-
sidering the first four as relevant, and the rest as irrelevant.
To compute precision at various levels recall, we ordered
all the query-ad pairs by their scores (as assigned by Equa-
tion 1), and used a threshold to include progressively larger
fractions of ads.

It should be noted that human relevance judgments are
quite expensive, especially when thousands of judgments are
needed. Therefore, our choices were either to judge several
ads for many queries, or numerous ads for just a few queries.
We adopted the former approach, as it provides a better as-
sessment of our methodology for a realistic sample of queries
of very different frequencies.

4.2 The effect of feature construction
In order to assess the value of our methodology, we com-

pare its results with the baseline that does not use feature
construction, and only uses features that are available from
the query per se, without query augmentation using search
results. Remember that the Onyx approach performs broad
match, as it matches the entire ad text to the augmented
query representation, rather than merely matching the ad’s
bid phrases to the original (unaugmented) Web query. Con-
sequently, to make the comparison meaningful our baseline
system also performs broad match, albeit without query aug-
mentation. That is, the baseline system matches the query
words to any part of the ad rather than solely to its bid
phrases. Restricting the baseline to exact match only would
drastically limit its coverage, making the results not compa-
rable to those of Onyx.

In Section 4.4 we also compare Onyx performance to that
of the log-based query substitution system [22] as another
baseline.

Figure 3 shows the standard precision-recall tradeoff curve
for Onyx setting 1. In the case of sponsored advertising, this
curve is of particular importance for the following reason.
Conventional information retrieval systems always produce
some results if the queried collection contains documents
that match some query words. Even though these docu-
ments may be irrelevant to the query, IR systems are nor-
mally expected to yield some results. However, in the case
of Web search advertising, in some cases it is desirable not to
show any ads. In this scenario, if no ads are relevant to the
user’s information need, then showing irrelevant ads should
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Figure 4: The effect of feature construction

be avoided as it deteriorates user experience. Therefore, it
is essential to ascertain that our method offers sufficiently
high precision at low to medium coverage levels.

Indeed, as we see in Figure 3, the precision of our method
improves steadily as we reduce the fraction of queries for
which ads are to be displayed. Furthermore, it can be read-
ily seen that feature construction based on search results
improves ad relevance compared to the baseline over the en-
tire range of recall values.

In the rest of this paper, we only report Onyx precision at
100% recall (with the exception of Figure 6, see explanation
in Section 4.4). However, according to the above analysis,
we could always select a lower recall (and correspondingly
higher precision) for actual system implementations.

Figure 4 presents the performance of the four different
system settings listed in Section 4.1.1. Observe that the
performance of all the four system variants is superior to
that of the baseline. Interestingly, the performance of Onyx
setting 4 is nearly identical to that of Onyx setting 1, imply-
ing that the quality of feature selection based on document
frequency (DF) and on TFIDF is essentially the same.

We also conducted a search over all α, β, and γ combina-
tions, with the values of each parameter varying from 0.0
to 1.0 in 0.1 increments (1,330 combinations in total, ex-
cluding the trivial combination α = β = γ = 0). The best
performance was achieved using α = 1, β = 0.6, γ = 0.4, and
it was insignificantly different from that achieved by Onyx
setting 1 (α = 1, β = 0.5, γ = 0.5).
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Figure 5: Onyx performance over a range of query
frequencies

4.3 Onyx performance for different ranges of
query frequency

As explained in Section 4.1.1, we constructed our query
set by stratified sampling out of a Yahoo Web search query
log collected over one full week. The distribution of query
frequencies follows a power law [45] (commonly referred to
as Zipf’s law), hence it is interesting to observe the relevance
of ads that our method provides for queries of different fre-
quencies.

Figure 5 shows Onyx and baseline performance for queries
in different frequency ranges. In this figure, “1” designates
the first decile (i.e., most frequent queries), “10” represents
the last decile of the first 10 million queries, and“Tail”stands
for rarest queries (sampled from the tail of the distribution).
Observe that our methodology provides more relevant ads
than the baseline for all query frequencies. Furthermore,
it should be observed that our method allows to provide
relevant ads even for the tail queries.

Interestingly, the relevance of ads for the most frequent
queries (decile 1) is notably lower than that of less frequent
queries. We believe the reason for that is that a large frac-
tion of queries in the first decile are navigational (e.g.,“ebay”,
“youtube”or “hotmail”), that is the user merely wants to get
the URL of the corresponding Web site. In such a case, the
user is rarely interested even in search results beyond the
first one, let alone any ads that might be shown, hence a
majority of such ads are considered less relevant.

4.4 Comparison with log-based query substi-
tution

As an alternative baseline, we also compare our method-
ology with log-based query substitution [22] (abbreviated as
LBQS in the sequel). LBQS is a method designed to im-
prove Web search queries by automatically analyzing query
logs, and learning from query transformations manually per-
formed by Web search users. Consequently, LBQS can be
viewed as a query transformation technique that uses alter-
native source of knowledge, namely, search query logs. In
the advertising scenario, we use LBQS to transform original
search queries into better ones, and then match them to ads.

LBQS generates possible substitutions by first finding all
pairs of successive queries issued by the same user in a search
engine log, and then analyzes these queries and finds com-
mon transformations. Given a new query such as“New York
maps”, the system segments it into phrases using pointwise
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Figure 6: Comparison of Onyx and LBQS

mutual information. This way, the example query would be
segmented as “(New York) (maps)”. To generate candidate
substitutions, LBQS then applies common transformations
observed earlier, for instance, transforming “maps” into “di-
rections”, yielding a substitute query “New York directions”.
The score of a substitution is determined by a machine learn-
ing classifier trained on a set of features that capture textual
similarity as well as the frequency of the transformations ap-
plied.

Figure 6 compares the performance of LBQS and Onyx.
For this experiment, we used an existing LBQS implementa-
tion that provided substitutions for 24% of the 700 queries
in our dataset (for the other queries, its learned model could
not apply any known transformation). Consequently, to
make the comparison meaningful, Figure 6 also shows the
Onyx precision at 24% level of recall.

As we can see from Figure 6, Onyx outperforms LBQS.
However, it is also interesting to compare the performance
of the two systems in greater depth by looking at individual
queries. Table 1 shows for each of the two systems how many
queries in our dataset get relevant ads, irrelevant ads, or are
not covered at all. Since Onyx and LBQS use very different
sources of knowledge (Web search results and search query
logs, respectively), it is intuitive to understand that they
perform well on very different query subsets. Furthermore,
for as many as 22% of the queries, Onyx provides relevant
ads while LBQS provides no ads at all. This observation
implies that it is possible to design a fusion approach that
provides relevant ads for an even larger fraction of input
queries by using the two systems together.2 We intend to
develop such a combined approach in our future work.

LBQS: Relevant Irrelevant Uncovered Total
Onyx:

Relevant 9.3% 3.6% 22% 34.9%
Irrelevant 4.7% 6.3% 48.9% 59.9%

Uncovered 0% 0% 5.2% 5.2%
Total 14.0% 9.9% 76.1% 100%

Table 1: Queries covered by LBQS and Onyx

2Table 1 was generated for LBQS coverage of 24% and Onyx
coverage of 100%. This is meaningful for our discussion,
since for higher coverage levels LBQS precision will neces-
sarily drop, thus providing relevant ads for an even smaller
fraction of the queries.



5. RELATED WORK
There have been several bodies of prior research that are

relevant to our study.

5.1 Online advertising
Online advertising is an emerging area of research, so the

published literature is quite sparse. A recent study [49]
confirms the intuition that ads need to be relevant to the
user’s interest to avoid degrading the user’s experience and
increase the probability of reaction.

In the content match scenario, Ribeiro-Neto et al. [34] ex-
amined a number of strategies for matching pages to ads
based on extracted keywords. They used the standard vec-
tor space model to represent ads and pages, and proposed
a number of strategies to improve the matching process.
While both pages and ads are mapped to the same space,
there is a discrepancy (called “impedance mismatch”) be-
tween the vocabulary used in the ads and in the pages. For
example, the plain vector space model cannot easily account
for synonyms, that is, it cannot easily match pages and ads
that describe related topics using different vocabularies. The
authors achieved improved matching precision by expanding
the page vocabulary with terms from similar pages, which
were weighted based on their overall similarity to the origi-
nal page. In this paper, we “bridge” between related words
by defining new features based on higher-level concepts from
the classification taxonomy.

In their follow-up work [26], the authors proposed a method
to learn the impact of individual features by using genetic
programming to produce a matching function. The func-
tion is represented as a tree composed of arithmetic op-
erators and functions as internal nodes, and different nu-
merical features of the query and ad terms as leaves. The
results show that genetic programming finds matching func-
tions that significantly improve the matching compared to
the best method (without page-side expansion) reported in
[34].

Another approach to contextual advertising is to reduce it
to the problem of sponsored search advertising by extract-
ing phrases from the page and matching them to the bid
phrases of the ads. Yih et al. [52] described a system for
phrase extraction that uses a variety of features to deter-
mine the importance of page phrases for advertising pur-
poses. The system is trained with pages that have been
hand-annotated with important phrases. The learning algo-
rithm takes into account features based on TFIDF, HTML
meta data, and search query logs to detect the most impor-
tant phrases. During evaluation, each phrase up to length
5 is considered a potential result and evaluated against the
trained classifier.

Langheinrich et al. [27] studied customization techniques
for matching ads to users’ short-term interests. To capture
short-term interests, the authors used search queries as well
as visited URLs, which could then be looked up in Web
directories. Jin et al. [21] used Web page classification to
determine whether a given Web page does not contain sen-
sitive content, so that it is acceptable to display ads on it.

Prior studies on sponsored search mostly experimented
with the information explicitly available in the query and
the ad. In contrast, in this work we study the importance
of constructing new features based on exogenous sources of
knowledge, such as Web search results and a large-scale tax-
onomy of commercial topics.

5.2 Using Web knowledge
Even though the average length of search queries is steadily

increasing over time, a typical query is still shorter than
3 words. Consequently, many researchers studied possible
ways to enhance queries with additional information. This
can be done either using electronic dictionaries and thesauri
[48], or via relevance feedback techniques that make use of
a few top-scoring search results. Early work in information
retrieval concentrated on manually reviewing the returned
results [40, 37]. However, the sheer volume of queries nowa-
days does not lend itself to manual supervision, and hence
subsequent works focused on blind relevance feedback, which
basically assumes top returned results to be relevant [51, 31,
15, 35]. As an alternative to relevance feedback, other stud-
ies performed query augmentation based on the analysis of
query logs [10, 22].

More recently, studies in query augmentation focused on
classification of queries, assuming such classifications to be
beneficial for more focused query interpretation. Indeed,
Kowalczyk et al. [25] found that using query classes im-
proved the performance of document retrieval. Studies in
the field pursue different approaches for obtaining additional
information about the queries. Beitzel et al. [4] used semi-
supervised learning as well as unlabeled data [5]. Gravano et
al. [18] classified queries with respect to geographic locality
in order to determine whether their intent is local or global.

The 2005 KDD Cup on Web query classification inspired
yet another line of research, which focused on enriching
queries using Web search engines and directories [29, 43,
44, 23, 47]. The KDD task specification provided a small
taxonomy (67 nodes) along with a set of labeled queries,
and posed a challenge to use this training data to build a
query classifier.

Web search results have also been used in a related task of
measuring similarity of short segments of text [38, 30]. More
generally, the use of search results as a source of additional
features, and especially the use of Web-based Prisma terms,
is also related to the studies of the Web as a corpus [24].

5.3 Cross-corpus learning
In our methodology, we use a text classifier that maps

Web search results onto a taxonomy of commercial topics,
whereas taxonomy nodes define new features for represent-
ing queries and ads. This approach is related to transfer
learning, where knowledge learned in one domain is trans-
ferred to another domain. Transfer learning methods [6,
12, 46, 33] leverage information from different but related
learning tasks, so that features constructed while solving
one problem can be used for solving another problem.

Only a few recent studies focused on cross-corpora query
augmentation. He and Peng [20], and later Diaz and Metzler
[11] used several document collections to augment TREC
queries. Li et al. [28] used Wikipedia as an external corpus
to augment ad-hoc TREC queries. There are two notable
differences between these works and our approach presented
herein. First, TREC queries are usually much longer than
Web queries. Second, our target collection of ads is substan-
tially different from TREC documents, since ads are short
and are often created with presentation in mind, and are
hence particularly difficult for indexing. To this end, in this
work we also augment indexed ads with constructed features.



6. CONCLUSIONS
Web search engines are complex systems, built as a re-

sult of many years of research and development. Running
a search engine requires a sophisticated infrastructure, built
and maintained to provide comprehensive and up-to-date
answers to users’ queries. In this work we build upon this
effort by using a search engine to improve search advertis-
ing. The key idea of our approach is the use of Web search
results to construct new features for the ad query, which is
used to select the ads shown alongside search results. We
also expand the ad representation using classification and
phrase extraction.

The contributions of this paper are fourfold. First, we
formulate a methodology for cross-corpora query expansion,
where we use one corpus (the Web) to augment queries to
be evaluated against another corpus (ads). Second, we pro-
pose a method for constructing new features based on ex-
ternal knowledge, which provides a richer representation of
both queries and ads. Next, we relax the requirement that
advertisers need to explicitly specify queries that their ads
should be shown for. Instead, we use the entire contents
of the ad to identify queries for which it should be shown.
Using the classification-based and phrase-based features fa-
cilitates thematic matching that goes beyond the simple bag
of words. The use of search results for ad matching provides
an additional benefit that the search results and ads are the-
matically matched. Finally, we provide an evaluation of an
end-to-end ad selection system based on an inverted index
that supports long queries.

In our experimental evaluation we show that using the
constructed features allows us to match Web search queries
to significantly more relevant ads. We also conducted abla-
tion studies to assess the individual utility of each feature
class, and showed that while the bag of words is still the most
important type of features for ad matching, the phrases and
classes also have a significant impact on the ad selection
quality. We compared our approach to a query substitu-
tion system that uses search logs as an alternative source
of knowledge [22], and argued for a possibility of building a
superior system by merging the two approaches.

Actual search advertising systems also incorporate past
click data into the ad matching process. In this work, we
focused solely on textual relevance, but in our future work we
plan to combine both relevance features and click-through
features. We also plan to evaluate our system in a real-world
setting and measure actual click-through rates in addition
to collecting human relevance judgments.
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