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ABSTRACT
Sponsored search is a three-way interaction between adver-
tisers, users, and the search engine. The basic ad selection in
sponsored search, lets the advertiser choose the exact queries
where the ad is to be shown. To increase advertising volume,
many advertisers opt into advanced match, where the search
engine can select additional queries that are deemed rele-
vant for the advertiser’s ad. In advanced match, the search
engine is effectively bidding on the behalf of the advertisers.
While advanced match has been extensively studied in the
literature from the ad relevance perspective there is little
work that discusses how to infer the appropriate bid value
for a given advanced match. The bid value is crucial as it
affects both the ad placement in revenue reordering and the
amount advertisers are charged in case of a click.

We propose a statistical approach to solve the bid genera-
tion problem and examine two information sources: the bid-
ding behavior of advertisers, and the conversion data. Our
key finding suggests that sophisticated advertisers’ bids are
driven by many factors beyond clicks and immediate mea-
surable conversions, likely capturing the value chain of an
ad display ranging from views, clicks, profit margins, etc.,
representing the total ROI from the advertising.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Retrieval

General Terms
Algorithms, Economics, Experimentation

Keywords
Optimization, Sponsored Search, Machine Learning

1. INTRODUCTION
Displaying ads alongside Web search results, i.e. sponsored

search is a key financial driver of the Internet economy. It
provides traffic to millions of Web sites, and accounts for a
large portion of the $30 billion online advertising spend.1

1eMarketer.com, estimates for 2009

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’11, February 9–12, 2011, Hong Kong, China.
Copyright 2011 ACM 978-1-4503-0493-1/11/02 ...$10.00.

Historically, the ad selection process in sponsored search
was delegated to the advertiser. For each ad, the advertiser
explicitly listed the bid phrases — queries for which the ad
is to be shown. This exact match mechanism allowed for
the search marketplace to grow quickly without the need
for search engines to address the complexities of ad selec-
tion. In addition it also gave the advertiser nearly complete
control of the ad placement. However, limits of this mecha-
nism quickly became apparent, making a pure exact match
system undesirable. First, the query volume distribution fol-
lows a power law with a long tail [6], making it impossible for
advertisers to know and to explicitly enumerate all queries
which are commercially relevant for their ad. This results
in lost revenue for the search engine and in lower volume of
traffic for the advertisers due to their inability to target all
relevant tail queries. Next, it is inconvenient for advertisers
to specify explicitly all possible matches. For smaller adver-
tisers the work to enumerate all matches may outweigh the
benefit. Finally, many advertisers are not privy to advanced
details of the bid and conversion landscape due to limited
volume. Their bids for tail queries would be suboptimal.
To address this limitation, advanced match was introduced,
which allows search engines to match ads to reasonably re-
lated queries (with advertiser’s permission). One challenge
is that matching can no longer be solved by simple record
lookup [2, 8] — information retrieval techniques are used
instead. However, a major point remains unresolved — if
the advertiser no longer explicitly bids on every query, the
search engine needs to automatically generate bids which ac-
curately reflect the advertiser’s known bidding behavior. The
bid is very important in the subsequent steps of the ad serv-
ing that determine the ordering of the ads, and the amount
that the advertiser is charged using an auction, as reviewed
later in the paper. Advanced match is a well established
technique for sponsored search advertising used by millions
of advertisers and responsible for billions of dollars of search
engine revenue. The paper contributes the following:

1. We formalize the problem of bid generation for ad-
vanced match. While previous work [2, 8] addressed
the issue of ad relevance, this is the first reported study
that addresses generating a bid for advanced match as
deployed in current search engines. The mechanism
is crucial since the auctioneer (search engine) is effec-
tively bidding on behalf of auction participants.

2. We propose machine learning methods for bid genera-
tion, and formulate a regression problem by predicting
new bids from existing ones in a large real-life corpus.



3. Our experiments using real advertising data from a
major search engine show that the proposed method
can very accurately predict the bids of actual ads. Fur-
thermore, we should that using the bid data of the so-
phisticated advertisers, in most cases results in better
prediction than using the conversion data. This sug-
gests that this bid data captures value from the other
steps of the funnel, as ad views and clicks.

Outline. We begin with a discussion of textual advertising
on the web in section 2. This is followed by a discussion
of the estimation problem proper, where we describe What
estimated in section 3. Basic machine learning methodology
to implement a solution, i.e. the How the bids are estimated,
is discussed in Section 4 and followed by an overview over
sample weighting (Section 5). We explain the set of features
used for estimation in Section 6 and experimental results are
presented in Section 7. We conclude with a discussion.

2. TEXTUAL ADVERTISING ON THE WEB

2.1 Sponsored search
Sponsored search is an interplay of the following three en-

tities: The advertiser supplies ads. His goal can be broadly
defined as promotion of products or services. The search
engine provides “real estate” for placing ads (i.e., it allo-
cates space on search results pages), and selects ads that
are relevant to the user’s query. Users issue queries and ex-
amine the search result page composed of web search results
and sponsored search ads.

The prevalent pricing model for textual ads is that ad-
vertisers pay per click (PPC) on the advertisement. The
amount for each sponsored search click is usually determined
by an auction process [4]. The advertisers place bids on a
search query, and their position in the column of ads dis-
played on the search results page is determined by their bid
via a generalized second price auction. Thus, each ad is
annotated with one or more queries or bid phrases.

In the model currently used by all the major search en-
gines, bid phrases serve a dual purpose: they explicitly spec-
ify queries that the ad should be displayed for, and simul-
taneously define the marketplace for the auction that deter-
mines the price of ad clicks. Figure 1 shows an overview
of today’s sponsored search engines. The user query is an-
alyzed and two separate queries are submitted, one to the
exact match selection, and another the advanced match ad.
For example, for exact match, light stemming and reordering
can be performed. The advanced match query can be ex-
panded with optional terms or query rewrites. Both queries
are evaluated by the respective layers. In the case of exact
match, the bid is specified by the advertiser. In advanced
match, the bid is determined by the bid generation process
that is the focus of this paper. Once all ads have associ-
ated bid, the final slate is composed by revenue reordering
and the cost for the advertiser is determined by the auction
mechanism.

Textual ads are composed of visible and invisible compo-
nents (to the user). The visible components are the title
usually displayed in bold font; the creative which is the few
lines of text shown to the user; and the display URL that is
shown to the user under the ad. Besides a bid phrase, the
invisible components are the full URL to the advertised web
page and the web page itself, also called the landing page.
While textual ads appear as individual units to the user,
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Figure 3: Advertiser utility funnel from ad views to
profit. (Indirect) benefits are obtained at every step
of the funnel rather than just at the end.

in practice ads are hierarchically defined in a nested struc-
ture of several entities, as shown in Figure 2. At the high-
est level, each advertiser has one or more accounts. Within
an account, usually the activity of the advertisers is orga-
nized around one or more campaigns, which are defined by a
set of ads with a particular temporal or thematic goal (e.g.
the “New Year” and “Black Friday” campaigns in Figure 2).
Campaigns consist of ad groups, which can have multiple
creatives and multiple bid phrases. In Figure 2 an ad group
promotes appliances within the Black Friday campaign.

An ad, as seen by the user, is a particular combination
of a creative and a bid phrase. Any creative can be paired
with any bid phrase in the same ad group. In some cases the
creatives are templated and can be filled in with the chosen
bid phrase at runtime. This type of ad schema has been
designed with the advertisers’ needs in mind, as it allows
the advertisers to easily define a large number of ads for
a variety of products and marketing messages. Each bid
phrase can be a different product or service offered by the
advertiser. Different creatives represent different ways to
advertise those products. Usually the number of creatives
is limited to a few dozens, while each ad group can have
hundreds or even thousands different bid phrases.

2.2 A motivating example
We begin our discussion with a small motivating example,

considering a contractor advertising his services. He may
be willing to pay a small amount when his ads are clicked
from general queries such as “home remodeling”, and higher
amounts if the ads are clicked from more focused queries
such as “hardwood floors” or “laminate flooring”. Since he
may not be privy to information about all possible related
queries that would provide him with business opportunities,
he may choose to opt into advanced match to benefit from
queries he may have overlooked, such as “marble flooring”,
or tail queries such as ”distressed hickory wood flooring”.
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Figure 2: Ad database schema — an advertiser has several ac-
counts and campaigns within each account. Typically ad groups
are topically coherent.

Even if he knew of these opportunities he might not know
how much to bid for them due to lack of skill or data.

His benefit in advertising may vary widely from build-
ing his brand (impressions) and disseminating information
about his trade (clicks) to users commissioning him to in-
stall new flooring (conversions) to users recommending his
services and becoming loyal customers (recurring business).

Figure 3 depicts this advertising utility funnel. Note that
the difficulty for the advertiser is that he needs to specify his
benefit not in terms of 5 events (impression, click, conver-
sion, revenue, profit) but in terms of a single event (typically
either impression, click or conversion).

2.3 Pricing
It is well known [4] that the generalized second price auc-

tion is not entirely incentive compatible, i.e., the optimal
strategy of an advertiser is not quite exactly to bid using his
true value. However, the deviations from this effect are com-
monly assumed to be negligible and in the remainder of the
paper we assume that the mechanism is at least monotoni-
cally incentive compatible, i.e., that the bids scale monoton-
ically with the value for the advertiser. A simplified model
of the value of an ad is given by

v(q, a) = vdisp(q, a) + p(click|q, a) · vclick(q, a)

+ p(conv|q, a) · vconv(q, a)

where vdisp(q, a), vclick(q, a), and vconv(q, a) are the adver-
tiser values for display, click, and conversion, respectively,
and where q denotes the query and a denotes the associated
ad. This means that an advertiser would be able to com-
pute the value v(q′, a) for a new query q′ simply by eval-
uating the corresponding click and conversion probabilities,
p(click|q′, a) and p(conv|q′, a). Unfortunately, the search en-

gine only receives

b(q, a) =
v(q, a)

p(click|q, a)
(1)

which specifies the bid, i.e., how much an advertiser is will-
ing to pay per click, such that the expected cost per view
matches the desired value v(q, a). However, this is insuffi-
cient to infer the values for the respective stages of the con-
version funnel, hence we formulate our approach in terms of
the probability of conversion rather than clicks.

We make a quite crude assumption that advertisers only
care about conversions, i.e., vdisp(q, a) = vclick(q, a) = 0,
and furthermore the value of a conversion is independent of
the query, i.e., vconv(q, a) = vconv(a) (the latter assumption
is also used in Section 3.2). Then we obtain the following
relationship:

b(q′, a) = b(q, a)
p(conv|q, a)

p(conv|q′, a)
(2)

This relationship will be the basis for one of our approaches
to compute the missing bids for advanced matches: the con-
version data model. The advantage of the conversion data
model is that Eq. (2) does not depend on explicit knowledge
of vconv(q, a) any more, but rather just on externally ob-
servable quantities such as the ratio between the conversion
probabilities for different queries. One of the key disadvan-
tages of assumptions in Eq. (2) is that it does not reflect the
value of an ad very well, owing to a large number of (prac-
tically necessary) simplifications. We evaluate this model in
detail in Section 7.

3. ADVANCED MATCH TARGETS
3.1 Bid based targets

A second source of data that can be used to predict the
bids are the existing bids of the same and other advertisers.



In other words, we can try to estimating b(q, a|Q), that is
the amount an advertiser should be bidding for a click on
ad a when query q was issued, where Q represents the in-
formation contained in the existing bids in the system. This
would include all pairs of (q′, b′) bid phrases and bids and
the information about how they fit in the ad schema de-
scribed above. In the following we will simplify the formulas
and omit the dependency on Q. A number of issues make it
quite difficult to tackle the problem directly.

One of the key issue is lack or representative bids for the
advanced match queries. When ad advanced match occurs,
not only that there is no bid from the chosen advertiser,
but in many cases advanced match triggers on tail queries
without any bids at all. A proxy is to use the existing bids
from the same ad group. That is, we may pretend having
received bids for all queries but one and try to estimate their
value based on the remaining bids. In the example of the
flooring contractor assume that he issues bids on queries
for ’acorn’, ’beech’ and ’cedar’ to show a given ad a. In
this case we could try to estimate how much he would have
bid for ’cedar’ given that we know his bids on ’acorn’ and
’beech’ and that we have information of how similar ’cedar’
is to the previous two queries. This is obviously contingent
on the preprocessing stage identifying ’acorn’ and ’beech’ as
similar to ’cedar’. There are several potential issues with
this approach:

Subsampling bias: A significant problem arises from the
fact that by leaving out only one ad at a time we
might be able to glean an unrealistic amount of in-
formation from the advertiser’s bidding behavior on
related queries. We can alleviate the issue by evaluat-
ing the performance on queries, ad groups, campaigns
or accounts which were not used in building the model.
While this approach does not solve the problem (by
definition advanced match data is not available), it al-
lows us to assess the bias rather conservatively.

Advanced match bias: A considerable number of adver-
tisers which provide exact match bids do so by pro-
viding bids for a combination of exact and advanced
matches. In other words, our flooring contractor may
bid $1 for queries of ’acorn’ with the implicit expecta-
tion that an adjusted version of this bid is to be used
for an advanced match. This bid is unbiased provided
that the advanced matching estimates are perfect. In
case the advanced matches are ’underpriced’ this will
drive up the bids for the associated keywords and vice
versa. If the sets of advanced matches were disjoint
this would result in an overall fair distribution of bids
(and it might arguably be the reason for the model
discussed in [3]). However, since in reality these sets
are partially overlapping no such efficiency guarantees
are available. The degree of this bias can be assessed
(partially) by evaluating the advanced match bids for
advertisers which issue exact match bids (but in large
numbers) only.

Relevant instance bias: Advertisers provide us only with
bids for keywords they are actually interested in. For
instance, the flooring contractor is unlikely to bid b = 0
for queries such as “bottle opener”, since users issuing
such queries are unlikely to be interested in his ser-
vices. This problem is addressed by pre-filtering algo-

rithms such that the set of queries for which we will at-
tempt to estimate an advanced match bid is restricted
to relevant ones (see Figure 1).

A second issue is that advertisers are equally unlikely
to bid on items that are consistently too expensive
for them. For instance, while the query “home loan”
might very well be commercially valuable for the floor-
ing contractor, he is likely to be outbid by banks and
credit unions, hence he may not bid on “home loan” at
all or his bid may not be very accurate. The later is
less of an issue since it is likely to occur only for bids
that are considerably higher than usual (which are un-
likely to occur with a regression estimator), hence even
if our bid estimator is somewhat inaccurate, it would
not have a significant effect since the only outcome is
that the advertiser would lose an auction that he would
not have won anyway.

Nonetheless we will use this data in one set of experiments
to assess the accuracy.

3.2 Conversion based targets
As noted earlier, an alternative to the use of leave-one-out

estimates is to employ Eq. (2) despite the rather crude ap-
proximation used in obtaining it and to assume rationality
of advertisers. In other words, whenever advertisers provide
conversion data for their ads we can use this information to
adjust bids accordingly. Unfortunately such data is sparse.
That is, while we might have a sizable number of conversion
events per advertiser, it is quite common to have many key-
words for which only a single conversion has been recorded,
leading to unreliable estimates of the associated conversion
probability.

We use a simple technique from natural language pro-
cessing — backoff smoothing of counts [14], to address the
problem. The basic idea is that aggregate conversion prob-
abilities at a given level will be a good prior for conversion
probabilities at the next lowest level (e.g. a good prior of
conversion probabilities for bid phrases are conversion prob-
abilities for the associated ad group).

We use hierarchical Laplace smoothing to address this is-
sue: it is reasonable to assume that the general conversion
probability p(conv|click) is a good prior for the conversion
probability per advertiser p(conv|click, A). Moreover, it is
reasonable to assume that the latter is a good prior when
conditioning on advertiser and campaign (A,C), and so on
for ad groups S and queries Q, as described in the hierarchy
of Figure 2. This yields the following estimates:

p̂ =
nconv

nclick

p̂(A) =
nconv(A) + n0p̂

nclick(A) + n0

p̂(A,C) =
nconv(A,C) + n0p̂(A)

nclick(A,C) + n0

p̂(A,C, S) =
nconv(A,C, S) + n0p̂(A,C)

nclick(A,C, S) + n0

p̂(A,C, S,Q) =
nconv(A,C, S,Q) + n0p̂(A,C, S)

nclick(A,C, S,Q) + n0

In practice we choose n0 = 10. The rationale is that un-
less we have approximately 10 instances per parameter, es-
timates of probabilities are going to be rather noisy. Note



that as the sample sizes for nconv and nclick increase, this es-
timator will converge to the true probability estimate due to
consistency of conjugate priors. Just as the bid based targets
the conversion based targets have a number of drawbacks:

Sample selection bias: Not all advertisers are equally so-
phisticated when it comes to monitoring their cam-
paigns. Nor do all advertisers have the same notion of
conversion. While the latter is less relevant since (2)
only uses ratios of counts, the former matters consid-
erably since only a biased subset of advertisers actu-
ally uses conversion tracking. Hence, using their data
to build a general advanced match bid generator is
fraught with difficulty.

Model bias: An equally big issue is the fact that the ap-
proximations leading to (2) are rather limited in the
first place. That is, they entirely ignore variations of
the value of a conversion dependent on a query, any
value of a click or any value of an ad display.

As our experiments show, conversion data is often only of
limited use while bid data is much more reliable, both due
to the economic incentive to bid accurately and due to the
larger amount of data.

4. METHODOLOGY
Having established the means for computing regression

targets for bids we want to estimate b. Using information
retrieval as a filter ensures that the distribution of possi-
ble (q, a) pairs is not too dissimilar from the actual set of
bids, we estimate the random variable b|a, q using either the
advertisers’ existing bids or his conversion probabilities to
generate training data. Both stages are necessary: the first
stage limits the set of potential ads whereas the second one
fine-tunes the bids such that they most closely match what
an advertiser would have offered had he chosen to display
an ad for a query.

4.1 Loss
Assuming we have the true bid b for a given (q, a) tuple

we need to determine by how much a deviation between the
true bid b and the estimate b̂ should be penalized. Overall,
we posit that the class of functions

L(b, b̂) := l(ψ(b)− ψ(b̂)) (3)

is suitable to measure the discrepancy between the “true”
bid and its estimate. Here ψ : R→ R is a strictly increasing
function and l : R → R is a convex non-negative function
which satisfies without loss of generality that l(0) = 0.

Picking the identity ψ(x) = x is not necessarily in the
advertiser’s best interest: while this strives to minimize the
average prediction error, it means that an error of $0.05 for
a bid of $10.00 has equal value as that error for a bid of
$0.10. In other words, advertisers for cheap keywords are
at a significant disadvantage in terms of estimation accu-
racy. This is undesirable since advertisers care about per-
formance relative to their expense rather than in absolute
terms. Choosing ψ(x) = log x addresses the issue.

Secondly, we choose squared loss l(x) = 1
2
x2 to penal-

ize deviations on the log-scale. Log-normality of errors is
a common assumption in financial mathematics (e.g. the
Black-Scholes model of option pricing). Note that a large

number of alternatives are possible, for instance Huber’s ro-
bust loss [9] which limits the influence of outliers. We use

L(b, b̂) = 1
2

(
log b(q, a)− log b̂(q, a)

)2
(4)

to compute β := log b̂ directly, yielding bids via b̂ = eβ .

4.2 Risk
Doing well on a single bid per se is not very meaning-

ful. Instead, we want to have a measure of performance
which quantifies progress on the entire range of combina-
tions (a, s, q). We define the expected risk via

R :=
∑
q,a

L(b(q, a), b̂(q, a))w(q, a) (5)

Here w(q, a) is a weighting function which ensures that we
emphasize goodness of fit in relevant regions. Moreover, we
will need to fashion a corresponding empirical risk term

R̂ :=
∑

(q,a)∈Z

L(b(q, a), b̂(q, a))ŵ(q, a) (6)

which tries to approximate R as well as possible. Here Z
contains all available data and ŵ(q, a) denotes a weighting
term associated with the available data.

4.3 Generalized Linear Model
We use a generalized linear model to capture the depen-

dency between queries, bid phrases, and advertisers. To
train this model we use the existing bids in the system (or
alternatively the conversion based targets described in Sec-
tion 3.2). For each bid phase, bid pair (q, b), we assume that
there is no bid specified (take the pair out). And then train
the model to guess the bid for this bid phrase. This way
we can train the model to guess the ground truth of existing
bids specified by the advertiser. The rationale is that the es-
timator should be capable of recovering the advertisers’ true
bids for exact match data. After all, this is the only data
where we have proper information about what the advertiser
actually intended to bid, capturing all potential value of the
bid for the advertiser. More formally, we extract features
φ(q, a,Q′) in order to obtain

log b(q, a) =
〈
φ(q, a,Q′), w

〉
(7)

for a suitably chosen parameter vector w. Note that Q′ here
represents all the other bids in the system, excluding the
one that has been considered. In summary, we have the
following minimization problem:

ŵ = argmin
w

∑
(q,a)

w(q, a)
1

2

[
log b−

〈
φ(q, a, q′, b′), w

〉]2
Finding a near-optimal solution of the above optimization
problem is straightforward via stochastic gradient descent.
For numerical and statistical stability we add a small quadratic
penalty λ

2
‖w‖2 to the objective. This proved essential to en-

sure good convergence. We have the following optimization
algorithm:

Initialize w = 0 and n = n0

repeat
Get new (q, a)
Increment counter n← n+ 1
Set learning rate η = c/

√
n

Compute error δ = 〈φ(q, a,Q′), w〉 − log b



Update w ← (1− ηλ)w − η · δ · φ(q, a,Q′)
until no more data

It can be shown [12] that this algorithm converges at rate

O(T−
1
2 ) to the risk minimizer. A very small number of

passes through the data (in the order of 10) suffices.

4.4 Missing Variables
Missing variables are pervasive in sponsored search: for

instance, some queries are sufficiently rare that not all of
their features are available, systems might fail to record and
process data, and certain features may not be well-defined
(e.g., the bid variance for advertisers with only one bid).

In the following we denote by x = (xo, xu) a random vari-
able where xo represents the observed part and where xu
corresponds to the unobserved (hence missing) part of an
observation. It is tempting to approach the regression prob-
lem of computing 〈w, x〉 by estimating the unobserved ran-
dom variables xu|xo first and to simply plug the conditional
estimate into the linear function 〈w, x〉. This approach is
not desirable since it ignores a number of aspects:

1. There may be significant estimation error associated
with trying to find the missing variables conditioned
on the fact that they are missing.

2. The variables may not be missing completely at ran-
dom: the fact that we have partial information might
be indicative of a particular type of data (e.g., the case
of missing variance for advertisers with only one bid).

3. At runtime, the estimation process is slowed down
since we first need to estimate the value of the missing
variables and only then compute 〈w, x〉.

These problems can all be addressed by defining the follow-
ing feature representation: instead of x we use

xi → (xi, 0) if xi is observed; xi → (0, 1) if xi is missing

(the second element serves as an indicator variable). Con-
sequently, instead of estimating the expected value of xi di-
rectly, we estimate the value of the product xi ·wi as a single
term. We never need to compute the value of the missing
variables at all, and moreover we simply perform the linear-
optimal correction provided that xi is missing. The only
drawback of this approach is that it does not take the ac-
tual value of the remaining observed features into account
(this could easily be addressed by higher order features).

5. SAMPLE WEIGHTING
Our methodology predicts bid values based on existing

bids of the same advertiser as well as bidding behavior of
other advertisers. When taking into account others’ bids, we
should obviously only consider bids of live ads that are being
displayed and disregard those of dormant or discontinued
campaigns. But should a bid of an ad showing once a month
be trusted to the same extent as the one showing thousands
times a day? At the very least, frequently displayed ads
are likely to be much better tuned, and hence their bids are
likely to be more realistic in the given market. We capture
this intuition by weighting bids by the amount of money
spent by the advertiser.

w(q, a) ∝ {Spend on q by advertiser} (8)

Scale Neutrality: An immediate consequence is that es-
timates which have the same relative error in terms of bid
estimation will have the same amount of overall error con-
tribution regardless of the level of the actual bid. More
concretely, an advertiser spending $100 on bids of a price
of $1 each and an advertiser spending the same amount on
bids of a price of $10 each, both of which attract a relative
error of, say, 5%, will generate the same error contribution.

Robustness: A desirable side-effect of weighting by budget
is that the bid estimator becomes robust against manipula-
tion by advertisers: if an advertiser were to increase his bid
in the hope to increase the bid estimate for advanced match
of a competitor, his data would only weighted by his actual
spend on the keyword. Consequently significant manipula-
tion would require resources proportional to the degree of
manipulation. Likewise, if the advertiser were to try and
lower his bid, the advertiser will fail to win auctions and
as a result his spend on the keyword will decrease, thus de-
creasing his statistical weight. This prevents an oscillating
strategy where an advertiser alternates between high and
low bids to benefit from pricing his competitors out of the
market due to incorrect advanced match bids.

Effective Sample Size: While weighting data may reduce
bias (if the weighted loss is what we strive to minimize),
it may significantly increase variance and thereby lead to
inferior estimates. One means of quantifying this effect is
to compute the effective sample size meff . For a dataset
with weights wi where

∑
i wi = 1 one may show [7] that

meff = ‖w‖−2
2 . For instance, if we have 100 observations

out of which 10 have 90% of the weight with the remain-
der evenly distributed among the rest, we have meff = 12.3.
This is intuitively clear — changing any of the over-weighted
observations affects the estimate almost as if the remaining
90 observations did not exist.

This leads to two opposing effects for sample weighting:
while minimizing the weighted dataset eliminates potential
bias it also induces higher variance due to the reduced data
set size. Hence, if the unweighted data is not too biased,
it may be advantageous to refrain from reweighting since
variance increase dominates the bias reduction. Empirical
evidence (Section 7) suggests this for advertisers’ bids.

6. FEATURES
Bid generation is a complex problem as it essentially seeks

to match human reasoning and sales information about the
business value of the bid phrases. We believe that merely
using the bids of other phrases is insufficient. Since we are
predicting the bid of a given ad for a given query, we formu-
lated three kinds of features, namely, those characterizing
the query, the ad (and the advertiser), and their interaction
(i.e., the query-ad pair). In what follows, we experimentally
validate the utility of these features.

All textual features are computed using stop word removal
and stemming. For phrase extraction we used a variant of
AltaVista’s Prisma tool [1]. Whenever dealing with text, we
use a TFIDF representation of the text as a bag of words
vector.

6.1 Query Features
The idea behind query-side features is that similar queries

should get similar bids. For instance, bids for the query ’red
roses’ should tell us more about suitable bids for ’white roses’



rather than for ’car insurance’. Given a query q, we define
the following features:

1. A TFIDF vector representing the query as a bag of
words and phrases (this leads to a potentially unlim-
ited number of features);

2. The number of words and the number of phrases in q
(the length of a query is indicative of its prevalence).

3. Following [2], we expand the query with Web search
results, and take the most salient Nw = 50 unigrams
and Nph = 50 phrases from these results as additional
features of the query.

4. Query frequency in search logs of the previous month.

5. The minimum and maximum document frequency (DF)
of query words and phrases in the Web corpus

6. The number of advertiser accounts bidding on the query
(this quantifies how competitive each bid phrase is).

7. The average, minimum, and maximum bid on the query
(if any) across all advertiser accounts.

6.2 Ad Features

1. Simple statistics of the ad group, as well as of its
enclosing campaign and account: the number of bid
phrases and creatives; the average, minimum and max-
imum bid; the average, minimum and maximum fre-
quency of bid phrases as queries in Web search.

2. The centroid of all the bid phrase vectors in the ad
group.

3. The centroid of the expansion vectors for the bid phrases
(using Web search results), similar to the expansion of
queries (cf. item 3 in Section 6.1).

4. The centroid of the text of all creatives in the ad group.

5. The topical cohesiveness of the ad group, as well as
of its campaign and account, computed as an average
distance of bid phrases and creatives from the corre-
sponding centroids (see items 2–4 above).

6.3 Query-Ad Features
The obvious combination of per-query and per-ad fea-

tures by taking outer products may become computation-
ally prohibitive. Therefore, we explicitly define features of
the query-ad pairs and compute cosine similarity between
the query vector (item 3 in Section 6.1) and the centroids
pertaining to the ad features (items 2–4 in Section 6.2)

As explained in Section 4.3, we employ the “leave one out”
approach both for training and for evaluating our method-
ology. That is, we use it for predicting existing bids of ac-
tual ads in our corpus. For a fair experiment, we obviously
exclude the bid phrase and its bid value from any feature
computation used for predicting that bid value.

7. EXPERIMENTAL EVALUATION
Our proposed strategy for dealing with advanced match

is to use penalized weighted least mean square regression
on the log-bids as a means for predicting advanced match
bids, namely by using the bids obtained in section 3 via
a synthetic leave-out estimate or a conversion based esti-
mate. Weighting of individual instances is achieved (when-
ever needed) via budget-dependent rescaling as discussed in
section 5. Finally, we deal with missing variables via the
variable duplication trick of section 4.4.

7.1 Data description
We evaluated our methodology on a fraction of Yahoo’s

ad database obtained as a snapshot for a given day in June
2009. The raw data included 70k advertiser accounts, 200k
campaigns and 2m ad groups.

We adopted the “leave one out” approach described in
Section 4.3 which allowed us to test the ability of our system
to predict actual bids that the advertisers explicitly specified
for existing ads. This way, advertiser-specified bids served
as the “gold standard” — the rationale was that after all
advertisers should know best what they would like to bid
for an keyword. We excluded all ad campaigns that had
constant or near-constant bids, including single bid phrase
campaigns.

In fact, one might argue that these advertisers would do
better if they adjusted their bids with a larger degree of
variation (which may not be possible for them due to lack of
sufficient data, though). Constant and near constant cam-
paigns provide no information to discriminate between the
possible bid values, and our method will be effectively forced
to predict that constant value. One possible reason for such
indiscriminate bidding might be advertiser’s lack of knowl-
edge of the true value of the various bid phrases. Our defi-
nition of near-constant bids was a logarithmic bid variance
of less than 0.1. This is significantly less than the error of
the bid predictor that we computed, hence including such
advertisers would only improve the error rate. The result-
ing data set is only 20% smaller. We created three different
test sets to simulate the following scenarios:

Cold start (ACCT): When an advertiser establishes a new
account, the system should be able to generate bid val-
ues for the account immediately. To evaluate the abil-
ity of our system to support this scenario, we formed
the first test set by randomly selecting 10% of adver-
tiser accounts. In each account, we used the leave one
out approach to predict each bid given all the other
ones, but none of these accounts’ data was included in
the training set. This is the most difficult scenario.

New campaign (CAMP): The second test set was simi-
larly designed to evaluate our system’s ability to pre-
dict bids for newly defined ad campaigns. We ran-
domly selected 10% of all campaigns and used all their
bids as test set (CAMP). Other campaigns belonging
to the same account could be included in training.

New bid phrase (PHRASE): Finally, we emulate the di-
rect case of advanced match bid generation by pretend-
ing that the advertiser did not add a particular bid
phrase and by checking whether our estimates in this
case accurately reflect what the advertiser would have
bid. This scenario is closest to the real bid generation



problem since we only need to perform estimation for
new phrases on otherwise well known advertiser data.
In analogy to before we defined the third test set by
randomly selecting 10% of individual bid phrases.

To summarize, we applied the {90%,10%} split at different
levels of the ad hierarchy (see Section 2 and Figure 2) to test
the prediction abilities of our system at different resolutions.

7.2 Sample weighting
To evaluate the soundness of the budget calibration of

Section 5 we use data concerning funds spent in the previous
week to weigh the accuracy of bids. As with click data, we
used backoff smoothing (see Section 3.2) to smooth between
spent budget at different levels. This addresses issues such
as spurious reweighting within rare keywords.

Moreover, to address questions regarding the validity of
the weighting approach we compare the performance of esti-
mates obtained by uniform weighting (ignoring money spent
per bid phrase) and by our proposed weighting scheme. This
leads to the following experiments:
1. Both training and test examples are weighted uniformly.
2. Only test examples are weighted.
3. Only training examples are weighted.
4. Both training and test examples are weighted according
to actual spend.

Table 3 provides the experimental results for the case of
subsampling on a per-phrase basis (PHRASE). As evalua-
tion metric we use the least mean squares error defined in
Section 4.1. That is we penalize by the squared deviation
between the logarithm of the bid and the estimate using (4).

7.3 Baseline
Our methodology uses a multitude of features to predict

the bid value for a given bid phrase. In order to test whether
this complexity is warranted, we compared the estimator to
a simple baseline algorithm that uses only the average of the
remaining bid values for other phrases in the same ad group
in order to predict a bid value for a new phrase.

To justify our choice of the baseline, let us first revisit
the ad retrieval method, which selects candidate ads to be
shown on the page. Given a query q′, it retrieves a number
of relevant ads, each of which is composed of a creative s and
a bid phrase q (we assume that q 6= q′, that is we assume
that q was not explicitly bid on by the advertiser, and hence
this bid needs to be predicted at runtime).

While the implementation details of the retrieval module
are outside of the scope of this paper, it identifies relevant
creatives and pairs them with the most relevant bid phrase
(as described in Section 2). Note that each creative s may
be paired with multiple bid phrases q. We average the bid
values b of the ad group containing s and q, and we use this
average value as our baseline. Since there may be significant
variance within bids of an ad group, averaging the values in
an ad group is more appropriate than taking any single one.

7.4 Bid generation for exact match data
We purposely decided to use exact match data to learn the

bids since advertisers that sign for advanced match might
already discount their bids. In fact, exact match bids are the
clearest signal of the true value of the bid to the advertiser.
By its very definition, there is no data for advanced match
since the latter is defined by the absence of explicit bids.

ACCT CAMP PHRASE
Sample size 31,089,439 29,492,142 30,031,135
Effective size 83,654 83,737 69,944

Table 1: Real and effective training sample sizes for
bid data with at least 0.8 log-variance. Observe that
the effective sample size is 2.5 orders of magnitude
smaller, leading to a significant increase of variance
in the estimator.

Data split Uniform Weighted
ACCT 15.1 4.3
CAMP 13.2 4.6

PHRASE 20.3 10.5

Table 2: Improvement (error reduction in percent)
of the estimates relative to the baseline performance
for a variance threshold on log-bids of 0.8 for both
unweighted and weighted data.

Data split Variance Uniform Weighted
PHRASE 0.05 10.8 4.1
PHRASE 0.10 4.2 6.6
PHRASE 0.20 13.6 5.0
PHRASE 0.40 20.6 6.7
PHRASE 0.80 20.3 10.5

Table 3: Improvement relative to the baseline per-
formance at different variance thresholds for both
unweighted and weighted data.

To test the accuracy of our approach we selected data
with a sufficiently high level of variance relative to a con-
stant bid. For the default set of experiments we chose cases
where the variance in the log-bid exceeded a threshold of
0.8. This yielded a dataset of approximately 30m training
samples (and 3m test samples) with an effective sample size
of approximately 80m for weighted data (see Table 1).

Given the large sample sizes we report results on a 10%
test set rather than a full 10-fold cross validation. This is
statistically safe — Chernoff bounds for a test set of 3 · 106

suggest a relative confidence interval of 0.1%. This is much
smaller than the gains we are reporting, hence our results
are statistically highly significant.

Our experiments are carried out on commercially sensi-
tive data. Hence we are unable to report absolute perfor-
mance figures. Instead, we report improvements relative to
the baseline performance in Table 2. Not surprisingly, our
estimator performs best when applied to bid estimation at
phrase level and worst when applied at the account level.
This is the case since there we are able to use much more
side information about keywords for a particular campaign
and advertiser when leaving out PHRASE data rather than
leaving out an entire account in the ACCT dataset. This
is nonetheless encouraging since the PHRASE scenario is
much closer to reality (we can always update our estimates
once we see new campaigns of an advertiser).

Note that the improvement relative to the baseline is con-
siderably worse when using weighted data (see Table 2 and
3). A large part of this is likely due to the dramatic reduc-
tion in effective sample size by 2.5 orders of magnitude (see
Table 1), thereby increasing the variance more than what



can be counteracted by a reduction in bias. This hypothe-
sis is confirmed in Table 4 which shows that while training
on unweighted data improves performance on the weighted
dataset, the converse is not true. Indeed, the estimate is
significantly worse than the baseline (this finding also holds
for other variance thresholds than 0.8 reported in the table).

7.5 Using conversion data
For a fraction of advertisers (in the range of 20%–30%),

we have access to conversion data, which reflects the fraction
of users who actually purchase the product or service being
advertised after clicking on the ad. Intuitively, this infor-
mation is highly valuable for bid generation, since knowing
how different bid phrases “convert” can lead to a better es-
timation of their true value to the advertiser. Conversion
has always been assumed to be the key factor in determin-
ing the value that the advertiser gets from the ads. In fact,
today some of the major sponsored search providers offer
experimental pricing models based on cost per conversion
(or per action) as opposed to the traditional cost-per-click
model. In our experiments we examined the conversion data
(from a fraction of the advertisers) and compared its utility
in predicting the bids with that of the existing bid values.

We conducted 3 experiments, coupling training and test-
ing on the conversion data with training and testing data
on the advertiser’s bids. If conversions are the major factor
in advertisers’ determination of the bids, one would expect
that models trained on one of these data sources would be
able to predict the test values obtained from the other. Ta-
ble 5 shows the results of these experiments (relative to the
baseline of training and testing on bid data). The experi-
ments indicate that while there is good signal in both bids
and conversion data, both datasets are largely incommensu-
rate, as evident in the large prediction error when applying
an estimate from the bids to conversion data.

This discrepancy is supporting evidence that bids involve
many more factors rather than just plain conversions (see
also Section 8 for a more detailed discussion). It is subject
of future research to find a joint latent space which is capable
of predicting both effects simultaneously.

7.6 Feature selection
Our method uses multiple features of different types. We

performed a series of ablation studies to assess the infor-
mativeness of different features. Owing to the multitude of
features used by our model, each time we eliminated an en-
tire group of similar features rather than individual ones and
for comparison purposes we used only those features while
excluding all others. Of particular interest are bid-related
features. We investigate the effect of ad group, (ad group,
campaign), (ad group, campaign, account), and the entire
subset of bid features. Table 6 contains the changes relative
to the baseline of a full feature set.

We see that removal of the ad-related features described
in Section 6.2 decreases the estimates considerably with the
not very surprising effect that performance keeps on decreas-
ing as we remove more features. What is relevant, though,
is the extent to which performance is decreased when re-
moving the feature group and the fact that it, on its own, is
equally insufficient for bid generation. In other words, Ta-
ble 6 establishes that it is the interaction between different
feature sets that leads to good results. Qualitatively similar
results can be obtained by removing query-related features.

train unweighted train weighted
test unweighted 20.3 -19.2
test weighted 3.7 10.5

Table 4: Performance relative to baseline in percent
when training / testing on weighted and unweighted
data. The experiments were carried out at a vari-
ance cutoff of 0.8.

train bids train conversions
test bids 1.0 n.a.
test conversions 26.6 1.49

Table 5: Performance relative to training and test-
ing on unweighted bid data. As can be seen there
is relatively reliable signal in both the advertisers’
bids and the users’ conversion behavior. However,
both datasets differ significantly, as can be seen in
the very large relative prediction error of 26.6 when
training on bid data and testing on conversion data.

removed exclusively
ad group -14.0 -17.0
ad group & campaign -14.3 -16.1
ad group & campaign & account -15.0 -16.0
all bid features -16.2 -14.2

Table 6: Relative effect of ad features on estima-
tion performance. The results (in percent) are in
terms of error increases over the full set of features.
We used a subset of the data with a minimum log-
variance threshold of 0.4.

7.7 Related Work
Recently, several approaches have been proposed to find

related queries and bid phrases for use in advanced match
and bid phrase suggestion. [11] report a framework for gen-
eration and evaluation of query rewrites for sponsored search
using query log and user session data. As in our approach,
query similarity is based on lexical and semantic features of
the queries in the a session (all queries issued by the same
user within a certain time period). While we don’t use the
same set of features as in this work, features can be easily
added to our framework. The trade-off between the rev-
enue and relevance in query rewrite generation for sponsored
search is explored in [13]. Query rewrites here are evaluated
using lexical features of the query and the rewrite. The ad
schema can be used as a source for query rewrite genera-
tion as well. [10] report an approach where the strength of
the relationship between the bid phrases is determined by
a random walk over the bipartite graph of bid phrases and
advertisers. A similar approach has been proposed for bid
phrase suggestion uses the bipartite graph of queries and
web search URLs [5]. None of these approaches addresses
the issue of determining the bid for the rewrites.

Dar et al. [3] study the problem of advanced match from
the advertiser’s perspective. Specifically, they study the
amount an advertiser should bid for a keyword provided that
the search engine exercises a uniform cost for all clicks as-
sociated with the given keyword.

This is clearly an extremely adversarial and rather unde-



sirable scenario in which the advertiser needs to determine
how much to bid for the mixed basket and how several of
these baskets might interact. While the setting leads to
mathematical insights concerning max-flow/min-cut prob-
lems, we believe that it is somewhat less applicable to a real
world situation where advertisers would expect a discount
for less relevant queries in the context of advanced match.
It is the latter that we study in this paper.

Our work is orthogonal to the results in [3] insofar as the
advertiser is free to use the max-flow reasoning to fine-tune
his pricing strategy once the search engine has carried out
its attempt to price ads optimally for the advertiser. We are
not aware of other related work addressing the problem of
advanced match bid estimation beyond [3].

8. SUMMARY AND DISCUSSION
We reported the first study of bid generation for advanced

match in sponsored search. Advanced match is used to select
a significant portion of the ads shown today, and is responsi-
ble for billions of dollars of sponsored search revenue. In this
paper, we explored the advertisers’ bidding behavior using
two data sources: the actual bids and conversion data.

The analysis of the bid data shows that many advertis-
ers assign the same or very similar value to all (or most) of
the bid phrases in their ad campaigns. This does not mean,
of course, that advertisers ultimately derive the same value
from different bid phrases. Instead, we speculate that the
near-uniform bidding is likely due to lack of data and inabil-
ity to make more informed decisions. For such advertisers,
the only information available for generating bids for a given
query is the relevance score of the ad retrieval module (usu-
ally, an IR-based model). If a given ad is scored for the
query as perfectly relevant, then the bid would be equal to
the advertiser’s (uniform) bid in the given ad group. Oth-
erwise, the bid can be adjusted based on the confidence in
the advanced match.

Our results on the ad campaigns with higher bid variance
suggest that these advertisers bid rationally, based on mar-
ket data features such us bid landscape, search frequency,
query similarity to the ad, etc.

The disparity in quality of bid generation using conversion
data and using actual bid data may have several causes:

• Some advertisers may lack appropriate expertise and
are unable to use the conversion data for the bid cali-
bration. However, in the presence of companies offer-
ing bid optimization services, we find this hypothesis
the least likely.

• An alternate explanation is that conversion data is not
representative of the actual profit that the advertiser
obtains. A supporting argument for this case is that
the value varies significantly based on keywords.

• Moreover, this disparity can be indicate that the value
the advertisers obtain from sponsored search goes be-
yond the immediate measurable conversions, and in-
clude user engagements caused by the other events in
the funnel (ad views and ad clicks), as well as potential
offline transactions.

• Finally, we observed significant covariate shift among
the advertisers opting to use conversion tracking. This
may indicate that the data obtained from conversions
is simply not representative of all advertisers.

Overall it seems that the bid data is the strongest source
of signal. We think this is a very important finding, which
suggests that the advertiser bid is derived from more than
just the conversion rate (e.g., advertisers derive value from
ad display).

In our future work, we plan to conduct additional experi-
ments to obtain more insight into these issues. Specifically,
we plan to study the correlation between the amounts ad-
vertisers spend on their campaigns and the variance of their
bids. We also plan to experiment with alternative spent-
based weighting schemes (e.g., logarithmic weighting).

9. REFERENCES
[1] P. Anick. Using terminological feedback for web search

refinement: a log-based study. In SIGIR’03, pages
88–95, 2003.

[2] A. Broder, P. Ciccolo, M. Fontoura, E. Gabrilovich,
V. Josifovski, and L. Riedel. Search advertising using
Web relevance feedback. In CIKM’08, 2008.

[3] E. Dar, V. Mirrokni, S. Muthukrishnan, Y. Mansour,
and U. Nadav. Bid optimization for broad match ad
auctions. In WWW, pages 231–240, 2009.

[4] B. Edelman, M. Ostrovsky, and M. Schwarz. Internet
advertising and the generalized second price auction:
Selling billions of dollars worth of keywords. American
Economic Review, 97(1):242–259, 2007.

[5] A. Fuxman, P. Tsaparas, K. Achan, and R. Agrawal.
Using the wisdom of the crowds for keyword
generation. In WWW, pages 61–70, 2008.

[6] S. Goel, A. Broder, E. Gabrilovich, and B. Pang.
Anatomy of the long tail: Ordinary people with
extraordinary tastes. In WSDM, pages 201–210, 2010.

[7] A. Gretton, A. Smola, J. Huang, M. Schmittfull,
K. Borgwardt, and B. Schölkopf. Dataset shift in
machine learning. In J. Quiñonero-Candela,
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2000/13, Université Catholique de Louvain - Center
for Operations Research and Economics, 2000.

[13] F. Radlinski, A. Broder, P. Ciccolo, E. Gabrilovich,
V. Josifovski, and L. Riedel. Optimizing relevance and
revenue in ad search: A query substitution approach.
In Proceedings of SIGIR, 2008.

[14] C. Zhai and J. Lafferty. A study of smoothing
methods for language models applied to information
retrieval. ACM Trans. Inf. Syst., 22(2):179–214, 2004.


	Introduction
	Textual advertising on the Web
	Sponsored search
	A motivating example
	Pricing

	Advanced Match Targets
	Bid based targets
	Conversion based targets

	Methodology
	Loss
	Risk
	Generalized Linear Model
	Missing Variables

	Sample Weighting
	Features
	Query Features
	Ad Features
	Query-Ad Features

	Experimental Evaluation
	Data description
	Sample weighting
	Baseline
	Bid generation for exact match data
	Using conversion data
	Feature selection
	Related Work

	Summary and Discussion
	References

