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Information retrieval systems traditionally rely on textual keywords to index and retrieve doc-
uments. Keyword-based retrieval may return inaccurate and incomplete results when different
keywords are used to describe the same concept in the documents and in the queries. Further-
more, the relationship between those related keywords may be semantic rather than syntactic,
and capturing it thus requires access to comprehensive human world knowledge. Concept-based
retrieval methods have attempted to tackle these difficulties by using manually-built thesauri, by
relying on term co-occurrence data, or by extracting latent word relationships and concepts from
a corpus. In this paper we introduce a new concept-based retrieval approach based on Explicit
Semantic Analysis (ESA), a recently proposed method that augments keyword-based text repre-
sentation with concept-based features, automatically extracted from massive human knowledge
repositories such as Wikipedia. Our approach generates new text features automatically, and we
have found that high-quality feature selection becomes crucial in this setting to make the retrieval
more focused. However, due to the lack of labeled data, traditional feature selection methods
cannot be used, hence we propose new methods that use self-generated labeled training data.
The resulting system is evaluated on several TREC datasets, showing superior performance over
previous state-of-the-art results.

Categories and Subject Descriptors: H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.3.3 [Information Storage and Retrieval]: Information Search and
Retrieval—Query formulation; Relevance feedback

General Terms: Algorithms, Experimentation
Additional Key Words and Phrases: concept based retrieval, explicit semantic analysis, feature
selection, semantic search

1. INTRODUCTION

Information retrieval (IR) systems aim at providing the most relevant documents
to a user’s query. Early IR systems were primarily used by retrieval experts, hence
initial IR methodology was based on keywords manually assigned to documents,
and on complicated Boolean queries. As automatic indexing and natural language
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queries gained popularity in the 1970s, IR systems became increasingly more acces-
sible to non-expert users. Documents were indexed by automatically considering
all terms in them as independent keywords, in what is known as the Bag-of-Words
(BOW) representation, and query formatting was simplified to a short natural lan-
guage formulation. However, even as the keywords became “noisier,” the basic
methodology for indexing them remained unchanged. Thus, these non-expert users
were increasingly faced with what was described as “the vocabulary problem” [Fur-
nas et al. 1987]. The keywords chosen by the users were often different from those
used by the authors of the relevant documents, lowering the systems’ recall rates.
In other cases, the contextual differences between ambiguous keywords were over-
looked by the BOW approach, reducing the precision of the results. These two
problems are commonly referred to as synonymy and polysemy, respectively.

IR researchers attempted to resolve the synonymy problem by expanding the
original query with synonyms of query keywords [Voorhees 1994]. However, the re-
lationship between the keywords chosen by the users and those used by the authors
often extends beyond simple synonymy. Consider the short query “Estonia econ-
omy,” an actual query (#434) in the TREC-8 Adhoc test collection [Voorhees and
Harman 1999]. A relevant document may discuss announcements by the ministry
of trade in Tallinn (the Estonian capital), with no mention of any direct synonym
of any of the query keywords.

To handle such problems, new query expansion methods that rely on corpus-based
evidence were suggested. For example, Xu and Croft [2000] suggested identifying
terms that co-occur with query keywords in the top-ranked documents for the query,
to be used as expansion terms that are more broadly related to the query (such as
“trade” and “Tallinn,” in this example). Such approaches showed significant im-
provement, but require manual tuning in order not to adversely affect performance:
too few expansion terms may have no impact, and too many will cause a query drift
[Mitra et al. 1998].

To tackle polysemy, the main proposed method was to apply automatic word
sense disambiguation algorithms to documents and query. Disambiguation meth-
ods use resources such as the Wordnet thesaurus [Voorhees 1993] or co-occurrence
data [Schuetze and Pedersen 1995] to find the possible senses of a word and map
word occurrences to the correct sense. These disambiguated senses are then used
in indexing and in query processing, so that only documents that match the cor-
rect sense are retrieved. The inaccuracy of automatic disambiguation is the main
obstacle in achieving significant improvement using these methods, as incorrect
disambiguation is likely to harm performance rather than merely not improve it.

Concept-based information retrieval is an alternative IR approach that aims to
tackle these problems differently. Concept-based IR represents both documents
and queries using semantic concepts, instead of (or in addition to) keywords, and
performs retrieval in that concept space. This approach holds the promise that
representing documents and queries (or augmenting their BOW representation) us-
ing high-level concepts will result in a retrieval model that is less dependent on the
specific terms used [Styltsvig 2006]. Such a model could yield matches even when
the same notion is described by different terms in the query and target documents,
thus alleviating the synonymy problem and increasing recall. Similarly, if the cor-
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rect concepts are chosen for ambiguous words appearing in the query and in the
documents, non-relevant documents that were retrieved with the BOW approach
could be eliminated from the results, thus alleviating the polysemy problem and
increasing precision.

Existing concept-based methods can be characterized by the following three pa-
rameters:

(1) Concept representation — the “language” the concepts are based on. In this
paper we distinguish between approaches to concept-based IR that used ex-
plicit concepts, which represent real-life concepts resembling human perception
[Voorhees 1993; Gauch et al. 2003], and approaches that utilized implicit con-
cepts, generated by extracting latent relations between terms or calculating
probabilities of encountering terms, that may not necessarily align with any
human-interpretable concept [Deerwester et al. 1990; Hofmann 1999; Yi and
Allan 2009].

(2) Mapping method — the mechanism that maps natural language texts to these
concepts. The most accurate mechanism would likely be manual, building
a hand-crafted ontology of concepts with a list of words to be assigned to
each [Miller et al. 1990], but such an approach involves significant effort and
complexity. The mapping can also be automatic, using machine learning [Gauch
et al. 2003], though that would usually imply less accurate mapping.

(3) Use in IR — the stages in which the concepts are used. Concepts would be
best used throughout the entire process, in both indexing and retrieval stages
[Gonzalo et al. 1998]. A simpler but less accurate solution would apply concept
analysis in one stage only, as in concept-based query expansion over BOW
retrieval [Grootjen and van der Weide 2006].

Of all the approaches suggested so far for concept-based IR, none fared well on
all three characteristics described above. An ideal approach would use explicit
semantic concept representation that is grounded in human cognition and intuitive
to use and reason over, with no limits on domain coverage or conceptual granularity,
would support a fully-automatic mechanism for mapping texts onto those concepts,
would be computationally feasible even for very large corpora, and would integrate
concept-based processing in both indexing and retrieval stages.

In this paper we propose a novel concept-based IR approach that meets all of
the above requirements, using Explicit Semantic Analysis (ESA) to augment the
standard BOW representation. The concepts used are taken from a very compre-
hensive, human-defined ontology of explicit concepts. Text analysis methods are
used to automatically and efficiently extract these concepts and represent any doc-
ument or query text using them. Finally, the proposed system builds upon existing
IR methodology and augments BOW representation with concepts in both indexing
and retrieval, using standard data structures and ranking methods.

We show that a naive implementation of IR using these concepts is insufficient,
due to the concepts’ inherent noisy nature. We address these difficulties by em-
bedding feature selection methods into the retrieval process, and then proceed to
introduce the full system which uses these selected concepts to augment a standard
keyword-based retrieval. We evaluate the proposed system on TREC datasets to
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Fig. 1. Generation of an ESA model from Wikipedia articles. The articles and words in them are
processed to build a weighted inverted index, representing each word as a vector in the space of
all Wikipedia concepts (articles).

show significant improvement in performance compared both with our own baseline
and with published results of other state-of-the-art systems.

Our main contributions in this work are threefold: a framework for using the ESA
representation method in information retrieval, a method for integrating feature
selection into the concept-based IR task, and three selection methods that are
based on common Al methods and shown to be beneficial for the task at hand.

The remainder of this paper is organized as follows. Section 2 provides back-
ground on ESA. Sections 3 to 5 describe the proposed concept-based algorithms
and empirical evaluation results. Section 6 surveys related work on concept-based
IR, and Section 7 concludes the paper.

2. BACKGROUND

Explicit Semantic Analysis, or ESA [Gabrilovich and Markovitch 2006], is a recently
proposed method for semantic representation of general-domain natural language
texts. ESA represents meaning in a high-dimensional space of concepts, automat-
ically derived from large-scale human-built repositories such as Wikipedia'. Since
it was first proposed, ESA has been successfully applied to text categorization
[Gabrilovich and Markovitch 2006; Gupta and Ratinov 2008; Chang et al. 2008],
semantic relatedness calculation [Gabrilovich and Markovitch 2007; Gurevych et al.
2007], cross-language information retrieval [Potthast et al. 2008; Sorg and Cimiano
2008], and concept-based information retrieval [Egozi et al. 2008].

In Wikipedia-based ESA, the semantics of a given word are described by a vector
storing the word’s association strengths to Wikipedia-derived concepts. A concept
is generated from a single Wikipedia article, and is represented as a vector of words
that occur in this article weighted by their tf.idf score. Once these concept vectors
are generated, an inverted index is created to map back from each word to the
concepts it is associated with. Thus, each word appearing in the Wikipedia corpus
can be seen as triggering each of the concepts it points to in the inverted index,
with the attached weight representing the degree of association between that word
and the concept. The process is illustrated in Figure 1.

Thttp:/ /www.wikipedia.org
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As an example, these are the top ten concepts triggered by the word ‘investor’:
(1) INVESTMENT; (2) ANGEL INVESTOR; (3) STOCK TRADER; (4) MuTUAL FUND; (5)
MARGIN (FINANCE); (6) MODERN PORTFOLIO THEORY; (7) EQUITY INVESTMENT; (8)
EXCHANGE-TRADED FUND; (9) HEDGE FUND; (10) Ponzi scHEME. Even without read-
ing the Wikipedia articles associated with these concepts, it will be intuitively clear
to most readers that these concepts are relevant to the input word. The concepts’
labels also exhibit a degree of semantic similarity and relatedness to the input term
that extends simple synonymy. As a result, computing word relatedness between
words based on their Wikipedia-ESA representation was shown to more effective
than any other current method [Gabrilovich and Markovitch 2007].

With this resource in hand, any input word to a text processing task can now
be semantically represented as a sparse vector in the high-dimensional space of
Wikipedia concepts. Larger text fragments are represented as a concept vector
that is a combination of the separate vectors of its individual terms, and ESA
operations can then be carried out by manipulating these vectors. For example,
computing semantic relatedness between two texts can be reduced to generating the
ESA concept vectors for each of them, and then calculating their cosine similarity.

To illustrate the nature of ESA concepts, we show the top concepts generated by
our ESA implementation for two short news clip fragment:

—Text: “A group of European-led astronomers has made a photograph of what
appears to be a planet orbiting another star. If so, it would be the first confirmed
picture of a world beyond our solar system.”

Top generated concepts: (1) PLANET; (2) PLANETARY ORBIT; (3) SOLAR SYSTEM;
(4) EXTRASOLAR PLANET; (5) JUPITER; (6) ASTRONOMY; (7) DEFINITION OF PLANET;
(8) PLuTo; (9) MINOR PLANET; (10) PSR 1257+12

All concepts are highly relevant and describe or relate to the subject of the text,
with the fourth concept (EXTRASOLAR PLANET) being the exact topic, despite the
fact that these words were not explicitly mentioned in the text. PSR 1257+12
is the name of a pulsar around which the first extrasolar planets were discovered
orbiting.

—Text: “New Jaguar model unveiled by firm”

Top generated concepts: (1) Jacuar XJ; (2) Jacuar (car); (3) Forp MoOTOR
CoMPANY; (4) JacUuAR XK; (5) LAND ROVER RANGE ROVER; (6) JAGUAR S-TYPE;
(7) Jacuar X-TYPE; (8) NissaAN MICRA; (9) V8 ENGINE; (10) JAGUAR E-TYPE
This example demonstrates the disambiguation power of ESA, as the top concepts
all refer to Jaguar the car maker rather than to the namesake animal (e.g. the
ESA concept Jaguar) or American football team (e.g. the ESA concept Jack-
SONVILLE JAGUARS). Despite the text containing no explicit car-related terms,
words such as “model” and “unveil” were more related to the industry meaning
and helped trigger the correct concepts. The concepts generated also hint at rich
world knowledge, such as the business relations to FORD MoTorR COMPANY and
LAND ROVER RANGE ROVER and the use of a V8 ENGINE on Jaguar models. The
NissaN MIcrA concept was triggered by a Micra variant that was inspired by a
Jaguar model.

We believe that the use of a knowledge repository as large and diverse as Wikipedia
creates a powerful concept ontology, well suited for concept-based IR. Wikipedia’s
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broad coverage of a huge range of topics, coupled with ESA’s automatic ontology-
building capability, yields a highly fine-grained ontology. In addition, the language
coverage of the inverted index, mapping from a massive aggregation of natural lan-
guage terms (the entire Wikipedia corpus) to the concepts in which they occur,
produces a powerful classifier to automatically map any given text fragment to this
concept ontology.

In this context we note an interesting work by Anderka and Stein [2009], who
hypothesized, and attempted to empirically show, that the nature of the text col-
lection used to build ESA from (i.e. its structure or the semantics of its nodes)
has much less impact on ESA performance than its size, by showing similar results
with ESA models built on other types of text collections than Wikipedia. It should
be noted, however, that the authors only experimented with a single application
of ESA (text similarity), and used just a single, extremely small and homogenous
test collection of 50 news documents (which may actually help explain how the best
performing ESA base collection was also a news resource - Reuters).

Finally, we point out that building an ESA model based on a semantics-based
ontology such as Wikipedia’s, or in another implementation the Open Directory
Project [Gabrilovich and Markovitch 2005], generates more meaningful and human-
readable concepts that can provide additional reasoning for the researcher and for
system users.

3. ESA-BASED RETRIEVAL

Given the described advantages of ESA as a semantic representation and its demon-
strated success in other text analysis tasks, it appears well suited for building a suc-
cessful concept-based IR model. In this section we introduce our first algorithm for
concept-based IR using ESA representation. The algorithm maps documents and
queries to the Wikipedia-ESA concept space, and performs indexing and retrieval
in that space. We then evaluate the algorithm’s performance on TREC datasets.
We show that combining concept-based relevancy of documents with that of pas-
sages in these documents, performs best for ESA-based retrieval. We also find that
the quality of generated concepts is lower than expected, and analyze the potential
causes and remedies to be applied in the next section.

3.1 ESA Concept-Based Indexing

We use ESA to map each document in the corpus to a weighted vector of concepts.
Like BOW vectors, concept-based vectors are also sparse, with concept weights
being zero for most of the Wikipedia concepts. Nevertheless, given that each word in
the document to be indexed may still be related to a large number of concepts, and
that a document containing a collection of words is likely to be related to an even
larger number, indexing the entire list of related concepts for every document is not
feasible. We therefore use only the concepts with the highest weights (association
scores). In a sorted representation of the vector, this subset of concepts is simply
its prefix.

Long documents are more difficult to map in full into the ESA concept space.
A small part of a long document might be relevant to the current query, but the
semantics of this part may be underrepresented in the concepts vector for the full
document. A similar problem exists also in BOW approaches, where the term
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#Index corpus D using ESA concepts; trim ESA vector to the s
# first concepts, segment documents to passages of length 1
Procedure ESA-INDEXING(D, s, 1)
Foreach d € D
Fy < ESA(d, s)
Foreach (c;, w;) € Fy
add (d,w;) to InvIndex|c;]
Py < DIVIDE-INTO-PASSAGES(d, )
Foreach p € Py
F, < ESA(p, s)
Foreach (c¢;,w;) € F,
add (p, w;) to InvIndex|c;)

Fig. 2. ESA-based indexing in an inverted index

frequency (TF) measure must be normalized [Singhal et al. 1995] to account for
documents of different lengths. However, for concept-based retrieval the challenge
is even greater, because of the averaging effect of the representation of longer text
fragments and the practical need to use only a small subset of the representation
concepts. Concepts generated for a short section that is relevant to the query and
is part of a larger document discussing non-relevant topics, might be pruned out
of the indexed vector since the concepts’ weights in the overall document concepts
vector might be too low to impact the retrieval results.

Previous research using BOW representation has shown that breaking long doc-
uments into shorter passages can improve document retrieval [Callan 1994; Liu and
Croft 2002], with the ranking of passages viewed as evidence to the relevance of
their source documents. Furthermore, it has often been shown that fized-length
passages yield better results than passages based on syntactic or semantic seg-
mentation [Callan 1994; Kaszkiel and Zobel 2001]. We therefore suggest a similar
approach, breaking documents into length-based overlapping passages and repre-
senting each passage separately by its own generated set of concepts. We expect
such an approach to achieve better results, in particular with long documents that
cover several themes.

Note that while Gabrilovich and Markovitch [2006] also split documents into sen-
tence and paragraph contexts in applying ESA to text categorization, they eventu-
ally combined the concepts of these sub-contexts into a single unified representation.
In our approach, each passage is indexed and may be retrieved as a stand-alone unit
of information. Thus, a passage is ranked separately as an independent indicator
of its original document’s relevance.

We now have, for any document to be indexed, a set of passages and a concept
vector representation for each. We index these concepts in a standard IR inverted
index, using the concepts’ unique identifiers as tokens. The score associated with
each concept in the vector is used as the token weight, equivalent to term frequency
in standard text indexing. The pseudocode for the above indexing algorithm is
described in Figure 2.

ACM Transactions on Information Systems, Vol. 0, No. 0, 2000.
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# Retrieve ESA concept-based results for query @, cutoff
# concept vector at s
Procedure ESA-RETRIEVAL(Q, s)

F, « ESA(q, s)

Return DocsPAss-RETRIEVE(Fy)

# Retrieve results for query ¢ from the combined index.
#INVINDEX-SCORE() stands for the standard inverted index
#function that scores a document’s match to a query
Procedure DOCsPASS-RETRIEVE(])
Foreach d € D
W, < INVINDEX-SCORE({, d)
Foreach p € PASSAGES(d)
W) < INVINDEX-SCORE({, p)
W), < Wy + max Wp
Return ranked list according to W

Fig. 3. ESA-based retrieval

3.2 ESA-Based Retrieval Algorithm

Upon receiving a query, our algorithm first converts it to an ESA concept vector.
The representation method is identical to the one by which documents and passages
are represented at index time. Having indexed full documents and passages, we now
have to choose how these two types of evidence are to be combined for ranking.
Following Callan [1994], we retrieve both sets of results and sum each document’s
full score with the score of the best performing passage in it?. The documents are
then sorted by this combined score and the top scoring documents are output, as
described?® in Figure 3.

The retrieval algorithm has a single parameter s controlling the cutoff (as de-
scribed in the previous section) of the query concept vector. The value for s may
be chosen to be the same as that in the indexing process, but not necessarily. In-
dexing the entire corpus with large cutoff values would incur significant storage and
computation costs, and is therefore not feasible. The query representation, on the
other hand, being derived from a much shorter text fragment and incurring no such
costs, could benefit from a finer representation, using a higher value for s.

3.3 Empirical Evaluation

In order to evaluate the usefulness of ESA concept-based retrieval, we carried out
a set of experiments.

3.3.1 Implementation. We used Xapian*, an open source probabilistic IR li-
brary, as the basis for our experimental platform. Document keywords and concepts
were indexed in a Xapian inverted index. In addition, Xapian’s implementation of

2We also experimented with assigning different weights to these two summed scores but found no
improvement in doing so

31n practice, the retrieval process is optimized to not iterate on all indexed documents; hence this
combination is performed only for the top ranking documents (the top 1000 in our case), but the
principle is similar.

4http://xapian.org/
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the popular Okapi BM25 ranking formula [Robertson and Walker 1999] served as
a BOW baseline. Most of the experiments used the TREC-8 Adhoc [Voorhees
and Harman 1999] and the TREC Robust 2004 [Voorhees 2005] datasets. The
TREC-8 dataset consists of 528,000 documents (mostly newswire) and 50 topics
(information-need descriptions, to be transformed into queries), and the Robust-04
dataset uses the same document collection with a different set of 49 topics. We used
only the short (“title”) queries in TREC topics, since these short (1-3 words) queries
better represent common real-life queries, in particular on the Web [Arampatzis and
Kamps 2008]. In addition, short texts were shown to benefit most from conceptual
representation [Ozcan and Aslandogan 2005; Gabrilovich and Markovitch 2006] as
their extremely sparse BOW representation suffers most from the synonymy prob-
lem. We use the Mean Average Precision (MAP) evaluation measure, commonly
used by TREC participants, which combines precision and recall while assigning
higher importance to the higher-ranking relevant documents.

Documents and passages were stemmed, stopped and indexed by their BOW
representation, to be used by the BOW baseline method (in which we also combined
passage and document ranking). Then, ESA-based representations were created
and indexed separately as described in Figure 2. Passages were set to be fixed-size
overlapping segments, shown to be most effective by Kaszkiel and Zobel [2001],
with passage size set to 50 words. We also tried to use longer passages (200 words)
but this proved to be less effective.

The ESA implementation used in our experiments is as described in Gabrilovich
and Markovitch [2006], with ESA vector cutoff in the indexing stage (s in Figures 2

and 3) set to 50 concepts for practical reasons (index size)®.

3.3.2  Results. Figure 4 shows the performance (MAP) of our ESA-based re-
trieval algorithm for various parameter values. To assess the impact of the concept
vector truncation, we measured performance for varying values of s (the ESA vector
cutoff level) in the gquery vector. In addition, to validate the added value of com-
bining documents and passages scores, we compared performance of the combined
score to that of documents and passages alone.

As Figure 4 clearly shows, passage context outperforms document context sig-
nificantly, but the best results are achieved when both are combined, an outcome
that is consistent with previous IR findings for BOW representations [Croft 2000].
We will be using the combined documents+passages scoring from here onwards.

Results for increasing values of s indicate that merely adding lower-ranking con-
cepts in the ESA vector does not improve retrieval. Not only does the precision-
oriented MAP score decrease as concepts are added, but the absolute recall (mea-
sured in the top 1000 retrieved documents) decreases as well. This finding suggests
that some of the generated concepts may be detrimental, and that successful appli-
cation of ESA to IR may require further selection of the concepts initially generated
for the query. We will revisit this hypothesis later on.

However, even when choosing the best performing parameter values, ESA-based
retrieval (MAP of 0.1760) is significantly inferior to that of our BOW baseline (MAP

5We have also experimented with indexing the 100 strongest concepts instead of the 50 strongest,
and found no significant impact on the performance.
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Fig. 4. ESA-based retrieval performance as a function of ESA cutoff and ranking contexts

of 0.2481). Considering the superior results obtained when ESA-based representa-
tion was applied to previous text analysis applications [Gabrilovich and Markovitch
2006; 2007], this result is quite surprising, and we must further analyze it before
proceeding to augment BOW with ESA concepts. In the following subsection, we
conduct a qualitative analysis of specific retrieval cases in order to better under-
stand the causes of this inferior retrieval and to suggest ways to remedy them.

3.3.3  Qualitative Analysis. The results shows that ESA-based retrieval can in-
deed, as expected, identify relevant documents even when these do not include
query terms or their simple synonyms. Let us consider TREC query 411 (“sal-

vaging shipwreck treasure”). The following short relevant document was retrieved
by the ESA-based method but not by the BOW baseline:

“ANCIENT ARTIFACTS FOUND. Divers have recovered artifacts lying
underwater for more than 2,000 years in the wreck of a Roman ship that
sank in the Gulf of Baratti, 12 miles off the island of Elba, newspapers
reported Saturday.”

The top 10 concepts generated for this document were:
SCUBA DIVING
WRECK DIVING
RMS TiTanIiC
USS HoEL (DD-533)
SHIPWRECK
UNDERWATER ARCHAEOLOGY
USS MAINE (ACR-1)
MARITIME ARCHAEOLOGY
ToMmB RAIDER I1
USS MEADE (DD-602)

whereas the query’s top 10 concepts were:
SHIPWRECK
TREASURE
MARITIME ARCHAEOLOGY
MARINE SALVAGE

ACM Transactions on Information Systems, Vol. 0, No. 0, 2000.
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HisTORY OF THE BRITISH VIRGIN ISLANDS
WRECKING (SHIPWRECK)

Key WEST, FLORIDA

FLOTSAM AND JETSAM

WRECK DIVING

SPANISH TREASURE FLEET

With 3 matches in the top-10 concepts (and more in lower positions), the ESA-
based method was capable of retrieving this relevant document as its third ranked
result, despite the fact that not one of the query terms appears in the document’s
text.

Let us now examine a contrary example, where concept-based retrieval returned
a non-relevant document, one that was not returned by the BOW baseline. We
revisit query 434 (“Estonia economy” ), for which the following short document was
retrieved using the concept-based method:

“Olympic News In Brief: Cycling win for Estonia. Erika Salumae won
Estonia’s first Olympic gold when retaining the women’s cycling individ-
ual sprint title she won four years ago in Seoul as a Soviet athlete.”

Although this document is Estonia-related, it concerns not economy but sports.
The document’s top 10 concepts were:

EsTONIA AT THE 2000 SUMMER OLYMPICS

EsTONIA AT THE 2004 SUMMER OLYMPICS

2006 COMMONWEALTH GAMES

ESTONIA AT THE 2006 WINTER OLYMPICS

1992 SUMMER OLYMPICS

ATHLETICS AT THE 2004 SUMMER OLYMPICS - WOMEN’S MARATHON

2000 SUMMER OLYMPICS

2006 WINTER OLYMPICS

CROSS-COUNTRY SKIING AT THE 2006 WINTER OLYMPICS

NEW ZEALAND AT THE 2006 WINTER OLYMPICS

The concepts seem quite relevant, discussing Estonia and various Olympics-
related themes. Now let us examine the query’s top 10 concepts:

EsToNIA

Economy oOF EsTONIA

EsTONIA AT THE 2000 SUMMER OLYMPICS

ESsTONIA AT THE 2004 SUMMER OLYMPICS

ESTONIA NATIONAL FOOTBALL TEAM

EsTONIA AT THE 2006 WINTER OLYMPICS

BALTIC SEA

EUROZONE

Tt VAHI

MILITARY OF ESTONIA

Technically, this document was correctly retrieved by the system, with three of
the top concepts shared between query and document. But why were these sports-
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related concepts generated for this query, despite the query’s bearing no relation
whatsoever to sports?

The Wikipedia articles from which these sports-related concepts were derived
contain no mention of the word “economy,” but do contain many instances of the
word “Estonia.” Thus, the tf.idf score used to compute the weight for the word “Es-
tonia” in these sports-related concepts was very high. Hence, even when the query
contains other words (such as “economy”) for which the weight of these sports-
related concepts is very low, the ESA vector for the entire query still assigns them
a high weight. As a result, Estonian sports-related documents are ranked too high
and are incorrectly retrieved by the system, degrading overall performance. The
query concept vector does include concepts related to Estonia’s economy, such as
EconoMy oF EsToNiA, Tt VAHI (Estonia’s prime minister during the country’s
major economic transformation period) and EUROZONE, but these are not effective
in removing the non-relevant sports results. In this respect, the effect is similar to
that of query drift [Mitra et al. 1998] that is caused by excessive text-based query
expansion.

Our observation, then, is that since the ESA classifier is created from a noisy
unstructured information source, and one that is different from the target corpus,
the initial concept vector might carry noise and ambiguities. To counter such
problems, we hypothesized that the concept vector should first be tuned to better
fit the corpus it is querying. This is similar to the idea that a corpus-based similarity
thesaurus [Qiu and Frei 1993] is better than a general purpose one.

An ESA vector has two candidates for such tuning — the subset of concepts and
the weights assigned to them. To check whether tuning should be performed for
both of them, we ran the same tests as before, but with all query concept weights
set to a uniform value. We found that this change hardly made any difference in
performance, and this conclusion was also verified in similar tests in later exper-
iments. Thus, we conclude that tuning the original concepts is useful only when
altering the set of concepts to be used. We will focus on this in the next section.

4. SELECTIVE ESA-BASED RETRIEVAL

We have shown that the basic ESA concept-based representation of a query or
a document may be ambiguous and noisy, requiring tuning before it can be used
efficiently. Before we propose tuning methods, we must decide where in the retrieval
process the tuning should be applied. As the concept-based representation is used in
both the document indexing and query processing stages, it would seem reasonable
to suggest that tuning should also be done in both.

We chose, however, to focus on the query processing stage only. The main reason
was that queries are much shorter than documents or even passages. For a longer
text fragment, the generated concepts reinforce the main topics in the text and
noise is restricted, whereas fragments such as short queries (typically 2-3 words in
TREC Adhoc datasets) generate concepts that still contain much noise. In addi-
tion, tuning a document’s representation during the indexing phase is problematic
because it lacks the context provided by a given query, and a certain feature may
be considered noise for one query but informative for another. Finally, changes in
indexing parameters require reindexing, incurring extensive experimentation costs.

ACM Transactions on Information Systems, Vol. 0, No. 0, 2000.



Concept-Based IR using Explicit Semantic Analysis : 13

4.1 Feature Selection using Pseudo-Relevance Feedback

When ESA was applied to the text categorization task [Gabrilovich and Markovitch
2006], it was vulnerable to the same problems we have just described. Nevertheless,
the researchers overcame these problems by employing aggressive feature selection
(FS). FS methods use labeled training examples to evaluate the utility of candidate
features [Guyon and Elisseeff 2003]. In text categorization, these examples are
provided as part of the task data. In contrast, the IR task inherently lacks any
labeled training data; hence applying F'S to information retrieval will require finding
an alternative method of evaluating the utility of features (concepts in our case).

For this purpose, we consider a feature of IR systems called relevance feedback
[Rocchio 1971], where the user provides relevance judgments on an initial set of
retrieved results. This feedback is then used to reformulate the query and retrieve
an improved set of results, thus it can be considered a type of labeled training data
for IR. Relevance feedback can also be automated to alleviate the need for users’
involvement, by assuming that the top ranked results (documents or passages) in
the initial retrieved set are relevant [Salton and Buckley 1990]. This method is
commonly referred to as pseudo-relevance feedback (PRF).

Inspired by PRF, we decided to use the results of keyword-based retrieval as a
source for evaluation in our FS process. Our updated retrieval method will thus
become two-phased, first performing keyword-based retrieval, then using its results
to tune the query concepts and perform concept-based retrieval.

Next, we had to decide which subsets of the results are to be used. Most of the
work on PRF used the top ranked documents or passages [Ruthven and Lalmas
2003; Xu and Croft 2000] as pseudo-relevant documents (or positive examples).
Some researchers chose to include also pseudo-non-relevant documents (or negative
examples), by using the bottom-ranked documents [Yan et al. 2003; Huang et al.
2006], while others found no improvement in doing so [Kaptein et al. 2008; Buckley
and Robertson 2008]. We chose to use both positive and negative examples, as the
initial query representation includes irrelevant concepts to be removed (for which we
believe negative examples will be useful), in addition to missing relevant concepts
(for which the positive examples alone are sufficient).

One may argue that, for the purpose of negative examples, randomly selected
documents may make a better choice, in particular for queries with many relevant
documents. Singhal et al. [1997] analyzed a similar claim, when suggesting which
documents should be used as non-relevant ones for learning a query profile for
information filtering. They showed that sampling non-relevant documents from
the “query zone” (meaning the set of non-relevant documents that are similar
enough to the query) is better than sampling from the entire corpus (minus the
relevant documents) when it comes to choosing features that are strong indicators
of relevance.

Like the findings of Singhal et al. [1997], our early findings showed that using the
bottom-ranking documents (a “query zone” equivalent) as non-relevant examples
produced better results than using random documents. We also found early in
our experimentation that keyword-based passages significantly outperformed full
documents. This can be explained by the more coherent concepts produced by
concise passages, similar to our findings in Section 3.3.2.
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# Retrieve ESA concept-based results for query q, cutoff concept vector at s;
# select initial concepts based on k pseudo-relevant examples, taken from BOW
# retrieval of depth n, to keep only fraction 0 from initial set (where applicable)
Procedure SELECTIVE-ESA-RETRIEVAL({, s, k, n, 6)

F, « ESA(q, s)

(di,..,dn) < BOW-RETRIEVAL({, n) # ordered by relevance

Dy + (dl7 ..,dk>

Dy <dn7k+17 o dn>

F;; — FEATURES—SELECT(FE, Dy, Dnr,0)

Return DOCSPASS—RETRIEVE(FZ)

Fig. 5. Selective ESA-based retrieval

Following these findings, our algorithm will be using the top ranking keyword-
based passages as positive examples, and the bottom ranking passages as negative
examples. The next section will describe an algorithm for ESA-based retrieval that
uses these pseudo-relevant examples to tune and select the query features.

4.2 Selective ESA-Based Retrieval Algorithm

Now that we have decided on a framework for evaluating features, let us describe
the integration of FS into the general ESA-based retrieval algorithm. Since we
chose to perform FS only on the query representation, the indexing algorithm is
unchanged and remains as described in Figure 2, and we shall now elaborate on
the revised retrieval algorithm, provided in Figure 5.

First, as in the non-selective algorithm, the textual query ¢ is represented by an
ESA concept vector FZJ. Then, the first n results ranked by keyword-based retrieval
for ¢ are fetched. The top k of these (k < n) are tagged as pseudo-relevant, or
positive examples, and the bottom k are tagged as pseudo-non-relevant, or negative
examples. Feature selection is then applied to these examples in order to select the
best performing concepts in F_’;, resulting in a modified ESA vector FZ. Note that in
practice, F'S manipulates a sparse representation of the vector, hence set operations
that are used in the algorithms are with respect to such representation. Finally,
concept-based retrieval is performed using F_;; and results are returned. The entire
process is illustrated in Figure 6.

Given this generic algorithm and information on positive and negative examples,
several actual F'S methods can be suggested to implement the generic FEATURES-
SELECT() step in the algorithm. In the following subsections we propose and ex-
periment with three such F'S methods.

4.2.1 Feature Selection using Information Gain. The first FS method uses each
feature’s individual utility to select a subset of the initial concept-based represen-
tation. This utility is measured by the information gained in separating the set
of positive and negative examples [Quinlan 1986]. Information gain (IG) was orig-
inally suggested in the context of a decision tree induction method for choosing
which feature to branch on, but is also used extensively in feature selection [Yang
and Pedersen 1997]. For a feature f and a set S composed of positive and negative
examples, the IG of f is calculated as the change in information entropy E when
splitting S into subsets S; according to their value of f:
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Wikipedia

Fig. 6. The PRF-based feature selection process

# Calculate the utility for the feature set in F, by calculating how well it separates
# pseudo-positive examples Dy from pseudo-negative examples Dy,
Function U (F, D,, Dy,)
m < |Dy U Dy
(d1,..,dm) < (DrUDnp,) sorted by their ranking in DoCSPASS-RETRIEVE(F)
best < max;—1..m (IR—IG('DT, Dnr, {dl,..,di}, {d¢+1,..,dm})
Return best

# Calculate the information gained by splitting the examples in Dy and Dy, into
# the two subsets Sg (predicted as relevant) and Sg (predicted as non-relevant)
Function IR-IG(D,, Dnr, Sg,Ss)
IG + 1 — |Sg|/|Se US| ENTROPY(Sg) — [Sgl|/|Se USg|- ENTROPY(Sg)
If |Dr NSgl| < |Dnr NSa
1G + —-IG
Return IG

Fig. 7. Utility calculation for a set of concepts to be used in IR

1Sl
N

IG(f,8) = E(S) - Z B(S))

where F(S) stands for the information entropy in a set S. In our case, f is an ESA
concept, and we define the value of f in each example to be the IR score of that
example when f is used as the query. Since such feature values are continuous, they
must be discretized in order to split them into subsets and calculate IG. Following
Quinlan [1986], the feature values are discretized by calculating IG for every possible
cutoff value, and using the best value as this feature’s IG. The complete utility
calculation is described in function #() in Figure 7. The function is generalized to
calculate utility for a set of features as well, as some of our F'S methods require.
We note that a feature that retrieves primarily negative examples is less useful
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#Select a portion 0 from the initial features Fz, using positive examples set Dy
7# and negative examples set Dpr to calculate IG for each feature
Procedure FEATURES—SELECT—IG(F_':I, Dy, Dnr,0)

(f1..f‘ﬁq‘) +— sort Fyy by U({f}, Dr, Dnr) in descending order

Return {fl”fWIﬁ(IH}

Fig. 8. Selective ESA-based retrieval — IG selection method

for IR purposes. The scarcity of relevant documents and the random nature of
non-relevant documents usually imply that very little information is expected to be
added by such features. Our version of IG, shown as function IR-IG in Figure 7
and used by the utility function (), takes that into account by negating the result
value when more negative examples are retrieved than positive ones. Negating
(rather than setting to zero) also proves useful in producing a value that is easy to
sort by, in case we have to select the “least-worst” features. One may argue that
features with a large negative value may better be used in a negation retrieval clause
(NOT operator), but our experiments showed no added value in doing so, which is
probably explained by the incidental and anecdotal nature of those features.

The resulting IG feature selection method is shown in Figure 8. The procedure
returns the best performing query features as measured by their IG values, cutting
off at the requested level (6).

4.2.2  Feature Selection using Incremental Information Gain. In the previous
section, we described a selection method based on the IG value of each individ-
ual feature. In our case, however, these features are ultimately used as part of a
complete set of query concepts, and dependency between the different features may
imply that individual utility calculation is inaccurate. The Incremental Information
Gain (IIG) method hypothesizes that feature utility would be better evaluated in
the context of a full set of query features. Since examining all subsets of the initial
feature set is exponential in the number of initial features and not computationally
feasible, we perform a heuristic search in this space using our utility function U as
the heuristic function.

# Filter original query features vector ﬁq by incrementally adding features that
# improve or sustain best retrieval IG-based utility (calculated using Dy and Dy ).
# The parameter 6 is ignored in this method.
Procedure FEATURES—SELECT-HG(E], Dy, Dnr,0)

<f1"f\ﬁq|> < sort }'::1 by U({f}, Dr, Dnr) in descending order

Fo1{} B

For i from 1 to |F,|

If Z’{(]:é U {fi}7D7'7D7L1') 2 Z/{(-Fé7D1'7 Dn'r')
Return Fj

Fig. 9. Selective ESA-Based Retrieval - IIG selection method using forward-selection
The IIG method builds the representation incrementally, using forward selection

or backward elimination [John et al. 1994]. Features are first sorted by their indi-
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vidual IG value, and the candidate query set is an empty one (or the full one, for
backward-elimination). Then, in each iteration a feature is added to the candidate
set (or removed, for backward-elimination) if this step does not degrade® current
pseudo-relevance based performance, or discarded otherwise. When all features
have been evaluated, the algorithm terminates and returns the selected features. In
addition to the advantage of evaluating the feature in the context of other features,
this method also has the advantage of not requiring a predefined selection level,
thus removing one parameter from the system.

Figure 9 shows the IIG selection method, when using forward-selection. For
backward-elimination, the algorithm will begin with the full feature set, and in
each iteration attempt to eliminate the lowest-performing feature, choosing to keep
it if its removal harms performance.

4.2.3  Feature Selection using a Rocchio Vector. In the two previously described
FS methods, the set of candidate features were those generated for the query by
the ESA feature generator, F; = ESA(q, s). However, the extremely short queries
(1-3 words in the datasets we used) may not suffice to generate and assign high
weight to important concepts.

Consider query 415 in TREC-8, “drugs, Golden Triangle.” This query refers to an
area in southeast Asia that is known for illicit opium production, but since no such
single explicit concept existed in our ESA model, the query’s top concepts were
related to other “golden triangle” meanings, and relevant topic-related concepts
were not considered. Employing F'S on the generated concepts was naturally not
helpful, as the initial candidate set’s coverage was not sufficient.

Yet, our ESA model does include other features that could represent the correct
“golden triangle” using other concepts, such as ILLEGAL DRUG TRADE, OPIUM,
MYANMAR and LAOS (two countries located in this triangle). Such ESA concepts
could be generated from texts discussing the correct query interpretation. Since
the top retrieved documents for the keyword-based query are expected to be such
texts, we may use them to try and compensate for the inaccurate query concepts.
Hence, we would like to generate and use these concepts as additional concepts in
the set of candidate features to be selected.

# use positive examples set Dy and negative examples set D,

# to reformulate initial query features vector F;,

# and return 6 strongest fraction of resulting vector

Procedure FEATURES-SELECT-RV (Fy, Dy, Dy, 0)
Y - 1 < 1 -
Fo« Fqg+ e the_’Dr ESA(,s) — D] ZJ‘GD,”» ESA(,s)
<f1..f‘F:,|> + sort Fy by weight of f in descending order

q

Return {fl"fF@-IﬁéH}
Fig. 10. Selective ESA-based retrieval — RV selection method

We thus propose a new FS method where the augmented set of candidate fea-

6This condition implies that for forward-selection we will keep redundant features, whereas for
backward-elimination we will remove them. We elaborate on this in the results section.
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tures is F"q = ESA(7,s) U {ESA(d,s) | d € D,}. Now we need to evaluate and
select features from this set. Using IG to evaluate how well each feature separates
top-ranking documents from bottom-ranking ones is not sound, as the additional
features were already taken from the top ranking documents. Instead, we will use
the weights of each feature in each document in the sets of positive and negative
examples, average these values into a combined weight and use the results to select
features.

We calculate the features’ weights based on Rocchio’s algorithm for relevance
feedback [Rocchio 1971]. Each feature receives a weight that is the sum of its
weights in the original query and in the positive example documents, and then its
weights in the negative example documents are subtracted. Finally, the strongest
features are kept and the rest discarded. The pseudocode for applying the RV
method is provided in Figure 10.

4.3 Empirical Evaluation

This section describes experiments carried out using selective ESA-based retrieval
with each of the selection methods, and a comparative analysis of the results.

4.3.1 Methodology. We continue using the experimental framework described in
Section 3.3.1, and evaluate each suggested selection method with various system
parameter settings. The following parameters have been fixed to a predefined value
in all these experiments: s, the concept vector cutoff, has been set to 50; and n, the
BOW retrieval depth for pseudo-relevance, has been set to the first 1000 results.
The system parameters we will be experimenting with are k, the pseudo-relevant
result set size, and 6, the feature selection aggressiveness level (where applicable).

To further assess the value of feature selection in itself, we also experimented
with a fourth, random method, which randomly selects a subset of features of the
required size (as defined by #) from the original representation, regardless of the
provided examples. We used this method to reject the hypothesis that an observed
improvement in performance may solely or partly be attributed to the use of a
smaller subset of the original features rather than the specific features selected.

4.3.2 IG Method Results. The IG method has two primary parameters: the
number of pseudo-relevant examples (k) and the selection level (6). Figure 11 shows
retrieval performance (averaged over all queries in each dataset) as a function of
0 for several values of k, compared with a baseline that performs no FS at all.
Both datasets show similar behavior, with F'S performance consistently improving
as selection level increases, peaking at § = 20% (which implies retaining 10 out of
the initial 50 features). More aggressive selection is already damaging, probably as
the result of removing useful features along with non-relevant ones.

Figure 12 shows the same experiment from a different perspective, with perfor-
mance as a function of k for several values of . The number of examples used seems
to influence performance less than selection level, except when too few examples are
used (k = 5), resulting in insufficient information for IG to be reliable. Neverthe-
less, adding more and more examples degrades rather than improves performance.
This may be attributed to the decrease in actual relevance of the pseudo-relevant
examples, when taken from lower rank positions.
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Fig. 11. Concept-based performance as a function of a fraction of the concepts selected (6), IG
method
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Fig. 12. Concept-based performance as a function of the number of pseudo-relevant examples (k),
IG method

4.3.3 IIG Method Results. The IIG method requires only one parameter to be
set, the size of the positive/negative example set (k). In addition, the algorithm
may be run in forward-selection or in backward-elimination mode. Figure 13 shows
retrieval results for different values of k in both modes, compared with results of
the initial baseline query.

In both datasets, the IIG method shows consistent improvement over the perfor-
mance of the baseline. The results also show the forward-selection approach con-
sistently outperforming the backward-elimination approach. One reason we found
for this was the inherent filtering of redundant features in backward elimination. If
a certain query has two highly informative but similar features, it is quite possible
that each alone will be sufficient to perfectly separate the positive from negative
examples. Then, backward elimination will eliminate one of them, as its removal
does not degrade performance, although in a full corpus retrieval, that additional
feature could have contributed to the query’s performance. This may also explain
why the difference between forward selection and backward elimination is greatest
when very few examples are used.

We also experimented with another variation of the IIG method, where the
weights of each examined feature were recalculated in each iteration. In this ver-
sion, the next feature to add will be the one to maximize the local value U (F, U{f})
rather than the global U ({f}) used in the algorithm described in Figure 9. Despite
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Fig. 13. Concept-based performance as a function of the number of pseudo-relevant examples (k),
IIG method

this version being more in line with common practice hill climbing implementations,
it performed well below the global one. We suspect this is due to the inaccurate
nature of the example documents, which increase the chance for local maxima.

4.3.4 RV Method Results. The RV method, like IG, requires setting two param-
eters, k and 0. Like the graphs in the previous sections, the graphs in Figures 14
and 15 show the impact of these parameters on the system’s performance. But
whereas with the IG method the query reverts to the original query at 8 = 100%,
this is not the case with the RV method. Even without any selection, the query
changes as a result of adding the features generated from the positive example
documents and of the reweighting step.
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Fig. 14. Concept-based performance as a function of a fraction of the concepts selected (6), RV
method

Figure 14 shows that even without selection, performance is better than the
baseline, and that the improvement generally increases with the selection level
(except for the very high selection levels). Figure 15 shows that using a very
small set of examples (k = 5) yields poor results, with performance improving and
stabilizing as more examples are provided. Once performance stabilizes. adding
further examples does not seem to make much difference. The impact of FS is
also clearly demonstrated, with the # = 100% curve mostly lower than the highly
selective curves.
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Fig. 15. Concept-based performance as a function of a fraction of the number of pseudo-relevant
examples (k), RV method

4.3.5 Random Selection Results. We replaced the PRF-based selection process
with a random one. A subset of the required size (determined by the parameter
0) was randomly sampled from the initial query features set for each query, and
retrieval results for these randomized concept-based queries were evaluated. This
process was then repeated 10 times (for each choice of #). The parameter k was
irrelevant for these experiments, as the examples were not used in any way.

The results in Figure 16 show a continuous decrease in performance as more
features are randomly removed from the initial set. This clearly indicates that the
improvement shown by previous methods must be attributed to the specific set of
features chosen, rather than just the act of using a smaller set of features.

4.3.6  Parameter Tuning through Training. All selection methods shown in this
section rely on one or two system parameters, whose values may have a significant
impact on system performance. These parameters can be tuned if a set of queries is
provided with relevance judgments on result documents. We used a third dataset,
TREC-7 [Voorhees and Harman 1998], which shares the same corpus as TREC-8
and Robust-04 but has a different set of queries, to perform parameter tuning.

We operated the system on TREC-7 queries with the three proposed F'S methods
and varied the parameter value ranges. The resulting best performance values
obtained were: for IG FS (k = 10,0 = 30%), for IIG FS (forward-selection, k =

Robust-04 TREC-8
018 T T T T T T T T 018 T T T T T T T T
S s
B 0.16 G 0.16 B
g 014 g g 014 4
o a
© 0.12 B ) 0.12 B
& g
o 0.1 1 o 01 1
> >
< o008 B < 008 B
& o006} random —— . § 006} random ——
= baseline ------- = baseline -------
04 1 1 1 1 1 1 1 1 004 1 1 1 1 1 1 1 1
100 90 80 70 60 50 40 30 20 10 100 90 80 70 60 50 40 30 20 10
% of features retained % of features retained

Fig. 16. Performance of random selection method, averaged over 10 runs each
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10) and for RV FS (k = 35,0 = 20%). All of these values fall well within the
top performing value ranges (though not always the peak values) in TREC-8 and
Robust-04. This result, coupled with the similarity of the system’s performance
graphs over the TREC-8 and Robust-04 datasets, suggests that relatively consistent
system behavior can be expected, and ESA-based systems may be tuned on one set
of queries and then used on other test sets.

4.4 Analysis

Having evaluated each of the suggested FS methods, let us examine the results in
greater depth. We have demonstrated that feature selection on the query concept
vector is effective in obtaining better retrieval results, and that this improvement
is not the result of merely using a smaller set of concepts. Now let us compare the
effectiveness of each method, in order to draw some general conclusions as to what
scenario they may be best suited for.

The IG method exhibits good peak behavior, but it seems to be highly sensi-
tive to the chosen selection level #. Tuning the system parameters using training
data, if available, may significantly alleviate this problem, as shown by the tuning
experiment we conducted.

The IIG forward-selection method appears to perform better than backward-
elimination. This method requires tuning only a single parameter — the number of
examples to be used. It would therefore be the preferred choice when no training
data is available. Its performance, though, is slightly lower than IG, and it is still
quite sensitive to the k£ parameter value.

The RV method performs slightly worse than IG for small example set sizes,
probably due to its overdependence on the quality of these examples (as they are a
source of generating features, not just filtering harmful ones). For larger example
sets (in our case, k > 15), it performs comparably to the IG method. In addition,
the RV method appears to be more robust than the other two, in that it yields overall
good results for a broader range of parameter settings, rather than a pinpointed
peak, and therefore will depend less on accurate parameter tuning.

Let us now revisit the Estonian economy example from Section 3.3.3. The revised
query, after being processed by the RV method (as an example), is:

EconoMy OF ESTONIA

MONETARY POLICY

ESTONIA

EURO

EcoNnoMmy OF EUROPE

NEOLIBERALISM

TuT VAHI

PRIME MINISTER OF ESTONIA

EUROZONE

NORDIC COUNTRIES

The noisy sports-related concepts that appeared in the initial features are now
filtered out of the query, as they appear very rarely (if at all) in the concepts
of both sets of positive and negative examples. Other concepts that may seem
relevant at first, such as ESTONIA and BALTIC SEA, are filtered out for being too
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Fig. 17. Best performing runs for all three F'S methods

broad, appearing frequently in the concepts of both example sets. Concepts that
are highly relevant to Estonia’s economy, such as ECONOMY OF ESTONIA, TIIT
VAHI and EUROZONE, are retained in the top positions, while other relevant ones
percolate upwards. In addition, the RV method also added NEOLIBERALISM, an
economy-related concept relevant to Estonia’s economy that was not included in
the original query concepts but appeared frequently in the concepts of positive
examples.

To summarize, Figure 17 shows the improvement over the baseline for the three
methods for 6 = 20%. On the basis of this figure, we can state that adding FS
to ESA concept-based retrieval can significantly improve retrieval results, with im-
provement of up to 40% over the non-selective ESA baseline in both datasets.

Note that even with this significant improvement, retrieval performance still
stands at just over 85% of our BOW baseline. We believe that an inherent bias
in the evaluation methodology may contribute to this low measured performance,
and we will elaborate on this issue in Section 5.3.5. However, these results are
sufficiently improved that we can now proceed with our plan to augment the BOW
representation with the selected ESA features for our final concept-based retrieval
model.

5. FUSED SELECTIVE ESA-BASED RETRIEVAL

A large body of research [Fox and Shaw 1994; Lee 1995; Vogt and Cottrell 1999;
Croft 2000] shows that combining (also known as ‘fusion’ of) retrieval methods may
improve final results. Fusion of ranking approaches is known to achieve best results
when the methods to be combined are substantially different in their approach
[Lee 1995]. With the significant difference between BOW and ESA representations,
we expect that combining them will also yield better results. This idea is further
reinforced by the findings of Gabrilovich and Markovitch [2005] in applying ESA to
text categorization, which showed that augmenting the BOW representation with
ESA concepts outperforms each individual representation alone.

5.1 Fused Selective ESA-Based Retrieval Algorithm

A survey of combining approaches can be found in Croft [2000]. In our study
we use the simple, widely used model of Linear Combination [Vogt and Cottrell
1999], where document scores are weighted sums of the scores assigned by the
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# Retrieve ESA concept-based results fused with BOW keyword-based results for query g,
7# cutoff concept vector at s and select using k pseudo-relevant examples, all retrieval
# is to depth n. Scores are a weighted sum using the parameter w as the weight.
Procedure FUSED-SELECTIVE-ESA-RETRIEVAL(G, s, k, n, w)

B <~ BOW-RETRIEVAL(q, n)

& < SELECTIVE-ESA-RETRIEVAL({, s, k,n)

D+ BUE

#-calculate normalized score in both retrieval modes (zero if not retrieved)

Foreach d € D

score(d,B) — minycpg(score(b,B))
normScoreBOW(d) A maxpeg(score(b,B)) 7breninb€3(score(b,8))

score(d,£) — minggg (score(e,f))
maxccg (score(e,£)) — mingcg(score(e,f))

normScoreESA(d) <

score(d) <— w - normScoreESA(d) 4+ (1 — w) - normScore BOW (d)
(dy ... d|D|> < sort D by score(d) in descending order
Return (d; ...dn)

Fig. 18. Fused selective ESA-based retrieval — the MORAG algorithm

individual retrieval methods to be fused, with weighting determined using training
data. Before summing, document scores are normalized to account for the different
ranges in score values, as suggested by Lee [1995].

Once both retrieval results (concept-based and keyword-based) are normalized,
document scores are then weighted and summed using the weight factor w, provided
as an additional parameter. The pseudocode for this algorithm is described in
Figure 18. The value for this parameter can be obtained using parameter tuning
on a dataset with relevance judgments.

5.2 The MORAG System

Let us now recap the entire resulting system, which we named MORAG’, as il-
lustrated in Figure 19. First, an ESA model is built from Wikipedia or another
source, as described in Gabrilovich and Markovitch [2006]. During the indexing
stage, MORAG indexes the corpus in both BOW and ESA representations. Then,
at retrieval time, the BOW query is submitted; its results are kept for the fusion
phase and also fed into the F'S module, together with the ESA query representation.
After F'S is complete, the resulting features are used to perform a concept-based
retrieval, and the results of the concept-based and keyword-based retrieval runs are
fused to produce the final MORAG results.

Note that in our implementation of MORAG we have used the same BOW subsys-
tem for both purposes: generating pseudo-relevant examples, and fusion to concept-
based results. However, other implementations using different BOW retrieval sys-
tems for each of these purposes are also possible.

5.3 Empirical Evaluation

We ran a set of experiments to evaluate the performance of the MORAG system,
and to analyze its robustness and further potential.

In addition, we evaluated MORAG in combination with and in comparison to top
performing systems in TREC-8. As Armstrong et al. [2009] recently pointed out,

"Morag is the Hebrew word for flail, an agricultural tool used to separate grain from chaff.
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Fig. 19. The MORAG solution architecture

Table I. Performance of MORAG using tuned parameter values and optimal parameter values.
Improvement percentage over baseline is shown in parentheses next to each result.

Dataset Baseline| MORAG —IG  MORAG — IIG  MORAG — RV MORAG
tuned tuned tuned optimal
TREC-8  0.2481 |0.2864(+15.4%) 0.2734(4+10.2%) 0.2888(+16.4%) 0.2947(+18.8%)
Robust-04 0.2622 |0.2914(+11.1%) 0.2923(+11.5%) 0.2879(4+9.8%) 0.3010(+14.8%)

it is not sufficient for IR researchers to show improvement over their own baseline,
rather they should strive to show that their method can improve over systems that
are already highly effective. We will show that our method is indeed capable of
doing that.

5.3.1 Methodology. The experimental methodology generally follows that of the
previous section. Specifically, in this algorithm, we also need to tune the value for
the parameter w. We used the TREC-7 dataset for this purpose too, selecting the
parameter value that maximized the performance of MORAG on TREC-7, which
was found to be w = 0.5 for the combination of ESA and Xapian BOW.

5.3.2 MORAG Results. Table I shows results for both TREC-8 and Robust-04
datasets for all three F'S methods, with parameters tuned on the TREC-7 dataset.
The last column shows the system’s performance with optimal choice of parameters,
as an indicator of what further improvement can be achieved by better parameter
tuning.

The results show an impressive improvement over the BOW baseline, for all FS
methods. Parameter tuning yields reasonable results: 55%-85% of the optimal
performance. We checked the statistical significance of the results using a paired
two-tailed t-test, and all the results were significant at p > 0.95.

Figure 20 compares performance for the different selection methods in MORAG,

ACM Transactions on Information Systems, Vol. 0, No. 0, 2000.



26 . O. Egozi, S. Markovitch, and E. Gabrilovich
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Fig. 21. Comparison of fused results with results of each fused subsystem on its own (for a single
choice of F'S method and selection level)

for various values of the parameter k, assuming that the parameter 0 is easier to
optimize due to its peak behavior (or its irrelevance for IIG). The results show the
RV method achieves best results, for sufficiently large values of k.

Figure 21 shows results for one specific choice of selection method and level,
comparing the performance of the fused system with that of its components. The
graph demonstrates how fusion with ESA-based results improves the system’s per-
formance by an increment that is correlated with the ESA system’s performance,
as expected. Note that despite the relatively low performance of the ESA run, fu-
sion still yields good improvement. Similar behavior is also observed for the other
methods and selection level values.

5.3.3  Fusion with Alternative BOW Subsystems. The previous experiments were
carried out using our choice of an experimental BOW system (Xapian). However,
since MORAG is modular, it can be used with any other BOW component, and
we were interested in assessing the system’s robustness over different (and better
performing) BOW systems.

We used two additional effective and common retrieval approaches implemented
in the Lemur toolkit®: a TF.IDF-weighted vector space model with pseudo relevance

8http://www.lemurproject.org/
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feedback (we denote this run FB-TFIDF), and a language model based on KL-
divergence using Dirichlet prior smoothing (denoted LM-KL-DIR). We used the
“out of the box” Lemur implementations with default parameter values, and set
the MORAG-specific parameters for these systems by parameter tuning on TREC-7.

In addition, we wanted to use systems that achieved the highest results in the
original TREC runs. Normally, such experimentation is not feasible, since these
systems (or their exact detailed implementation) are usually not available, and
evaluations of this kind are not common in IR. However, since MORAG performs
fusion on the result-set level (rather than change the core ranking functions), such
comparisons are possible in our case using only the target systems’ output. TREC
provides access to past participants’ raw results, and we used this data as additional
BOW systems.

When determining which TREC systems are best to compare with, we searched
for those that employed standard BOW approaches, were among the top performing
on the evaluated datasets, and that participated in TREC-7 (with no major internal
changes) so that we could also perform parameter tuning using their TREC-7 re-
sults. We could not find candidates in the Robust-04 dataset that were good enough
for this comparison; hence, we will show results only on the TREC-8 dataset.

Note that the BOW system is used twice in MORAG — once as a source for
PRF, and once for fusing the results. However, since relevance feedback in MORAG
is passage-based, and the system outputs we had access to were document-based
results, we still had to use our own BOW baseline for the PRF stage.

We used BOW results from the Okapi [Robertson and Walker 1999], PIRCS
[Kwok et al. 1999] and AT&T [Singhal et al. 1999] teams, which were 3 of the top
performing systems of TREC-8 participants using short queries. The Okapi and
AT&T teams augmented standard BOW retrieval with extensive query expansion
methods based on PRF, while the PIRCS team used a system that combined differ-
ent BOW retrieval models (probabilistic and language modeling). As stated earlier,
our relevance feedback utilized Xapian passage-based results for all runs, and the
ESA FS method used in these experiments was IG. All three teams stated in their
publications that their system was virtually the same as that used in TREC-T;
hence we take the parameter tuning on TREC-7 to be valid for these systems as
well.

Table II shows the improvement gained by using each of these systems as the
BOW component in MORAG. The third column shows results when fusing with
tuned parameter values as described above, while the fourth column shows results
for optimal parameter values. We evaluated these results for statistical significance
as well, and significant results are marked in boldface.

These results demonstrate that improvement can also be achieved with top per-
forming BOW systems, although the added value of the fusion was lower in those
cases. This is understandable, given the current relatively low performance of ESA
retrieval alone, and considering that successful fusion is known to require the fused
systems to have comparable performance levels [Croft 2000].

5.3.4 Comparison to Fusion of BOW Systems. Fusing results from two retrieval
systems is known to be a potential source of improvement in itself [Croft 2000], re-
gardless of the underlying text representations. To assess the true contribution of
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Table II. TREC-8 results for MORAG with several BOW baselines, us-
ing tuned parameter values and optimal parameter values. Improvement
percentage is provided in parentheses. Statistically significant results are
marked in boldface.

BOW Baseline MORAG MORAG

system (tuned) (optimal)

Xapian 0.2481 |0.2864 (15.4%) 0.2947 (18.8%)
LM-KL-DIR 0.2498 |0.2877 (15.2%) 0.2924 (17.1%)
FB-TFIDF  0.2697 0.2829(4.9%) 0.2951 (9.4%)

Okapi 0.2787 | 0.3042 (9.1%) 0.3065 (10.0%)

AT&T 0.2853 0.2977(4.3%) 0.3096 (8.5%)

PIRCS 0.3063 0.3211(4.8%) 0.3239 (5.7%)

Table III. Comparison of MoraAG TREC-8 results (optimal parameter values) with
TREC-8 results of BOW-BOW fusion (optimal w values). Statistically significant re-
sults are in boldface.

BOW +RMIT +ACSys +INQUERY MORAG
system | (MAP=0.2236) (MAP=0.2309) (MAP=0.2325) (MAP=0.2223)
Xapian |0.2524 (+1.7%) 0.2569 (+3.5%) 0.2586 (+4.2%) 0.2947 (+18.8%)
Okapi |0.2921 (+4.8%) 0.2882(+3.4%) 0.2903 (+4.1%) 0.3065 (+10.0%)
AT&T | 0.2943(+3.2%) 0.2933(+2.8%) 0.2897(+1.5%) 0.3096 (+8.5%)
PIRCS| 0.3086(+0.8%) 0.3068(+0.1%) 0.3075(+0.4%)  0.3239 (4+5.7%)

ESA concepts to the results shown thus far, we wanted to measure what portion
of the improvement gained by MORAG can be attributed solely to the act of fusing
results. To do so, we compared the improvement attained by MORAG with that
attained by fusing the baseline BOW results with results of another BOW sys-
tem whose measured performance is similar to that of our concept-based retrieval
subsystem.

We compared optimal results for MORAG with optimal-w results of fusion with
several other TREC-8 participants who applied the BOW approach and used short
queries: RMIT [Fuller et al. 1999], ACSys [Hawking 1999] and INQUERY [Allan
et al. 1999]. These three system runs had a comparable or slightly higher MAP
score than our ESA-based run, and fusing them with each of the BOW systems in
the table provides an indication of the value of fusion itself. We used optimal rather
than tuned w values, since only one of these participant groups (INQUERY) stated
that no changes were made between TREC-7 and TREC-8, and hence training on
TREC-7 was not sound.

Table IIT shows the results of these experiments. For comparison, the last col-
umn lists the optimal MORAG improvements again. The obtained results are much
poorer than MORAG’s and most are not statistically significant, despite being pro-
duced by fusion with systems that perform slightly better than our ESA retrieval
method. This indicates that the improvement in the previous section cannot be
attributed solely to fusion, and demonstrates the added value in the concept-based
retrieval component of MORAG. This finding is also in line with Lee [1995], who
posited that combining retrieval approaches works best when the representation
and weighting schemes differ significantly.

5.3.5 Additional Measures and Analysis. We have shown in the previous sec-
tions that fusion with ESA concept-based retrieval produces better results than
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fusing with BOW systems. We now try to better understand why this is so.

Table IV shows additional IR measures for several of the tested BOW systems,
listing measured values for the baseline run of each system (first line), for the
MORAG run using that system (second line) and for a run that fuses with another
BOW system (fourth line). In this latter run, for Xapian and Okapi we used the
best performing fusion in Table III, while the two Lemur runs were fused with each
other.

Examining the “PQ@5”, “PQ10” and “relevant retrieved” columns, we observe
that the improvement in MAP demonstrated by MORAG is not to be attributed
primarily to an improvement mainly in recall or mainly in precision - both measures
are substantially improved. To further assess the improvement in recall we have also
measured the overlap in relevant documents retrieved between each pair of fused
systems (“overlap of relevant” column). Little overlap between the systems means
that there is more chance that each system contributes new relevant documents to
the pool, thus higher chances for higher overall recall. However, the Lemur fusion
run (LM-KL-DIR w/FB-TFIDF), where 2922 of the final 3124 relevant documents
are shared between the two fused runs and yet the overall recall is higher than
MORAG’s and nevertheless the final MAP is lower, demonstrates that other factors
need to be examined to get the full picture.

The “non-rel retrieved” column measures the number of documents retrieved
by each system, that were judged by TREC assessors to be not relevant for the
dataset’s queries. The results in this column indicate that MORAG consistently
reduces the number of non-relevant documents retrieved, whereas the BOW fusion
usually increases this number. This can be explained by the different ranking ap-
proach taken by a concept-based method: many non-relevant documents retrieved
by a keyword-based approach may include the query terms in a high frequency
but are not related to the query. Other keyword-based systems, ranking by similar
principles, are likely to rank these documents high as well and reinforce these false
positives, whereas a concept-based approach, ranking by conceptual similarity, is
more likely to rank them low. This hypothesis is further reinforced by the “overlap
of non-rel” column, where we explicitly quantify this overlap.

If we now revisit the Lemur fusion run, we’ll notice that the two fused Lemur
methods have not only a high overlap in relevant documents, but also a significantly
high overlap in non-relevant documents. Such a high overlap implies that non-
relevant documents are reinforced too, thus hurting the overall precision despite
the substantial improvement in recall. This low result is despite the fact that the
fused systems perform well individually and use quite different ranking approaches.

Finally, we point at a third group of documents worth examining — the un-judged
documents. The “pooling” method used in the TREC methodology [Voorhees and
Harman 1999] implies that only a small fraction of the corpus is evaluated for rel-
evance by the human assessors, and any un-judged documents are then assumed
to be non-relevant. This approach was found to work well when comparing the
relative performance of IR systems. However, research has shown that the use of
pooling could discriminate against a new method that is based on nowvel principles
[Zobel 1998], and it has been recommended that researchers consider the number of
un-judged documents being fetched as an indication that performance is probably
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Table IV. Additional IR evaluation measures for TREC-8 results using several BOW base-
lines. BOW systems are fused with concept-based retrieval (using MORAG) and with another
BOW system for comparison.

BOW MAP PQ@5 P@10 relevant overlap of non-rel overlap of
system retrieved relevant retrieved non-rel
Xapian 0.2481 0.484 0.472 2735 20106
w/MORAG 0.2864 0.552 0.478 3062 1824 19400 7115
(+15.4%) (+14.0%) (+1.3%) (+12.0%) (-3.5%)
w/ing601 0.2586 0.484 0.462 2907 2299 21436 15180
(+4.2%)  (0.0%)  (-2.1%)  (+6.3%) (++6.6%)
Okapi 0.2787 0.552 0.488 3013 21271
w/MORAG 0.3042 0.580 0.522 3168 2161 20410 8531
(+9.1%)  (+5.1%) (+7.0%) (+5.1%) (-4.0%)
w/RMIT 0.2921 0.536 0.474 3095 2370 22878 13790
(+4.8%) (-2.9%)  (-9.2%)  (-2.3%) (+12.1%)
LM-KL-DIR | 0.2498 0.468 0.442 2857 22048
w/MORAG 0.2877 0.552 0.506 3087 2042 20553 7759
(+15.2%) (+17.9%) (+14.4%) (+8.1%) (-6.8%)
w/FB-TFIDF| 0.2717 0.488 0.444 3124 2922 22450 17012
(+8.8%) (+4.3%) (4+0.5%) (+9.3%) (+1.8%)

being underestimated. Following this recommendation, we found that our concept-
based runs retrieved almost 40% more un-judged documents than an average BOW
system (about 35000 documents compared to about 25000 in the evaluated BOW
systems). Hence, there is reason to suspect that the true performance of MORAG
may be even higher than the reported results, since some of these un-judged doc-
uments may well be relevant documents that could not be detected by any of the
previous BOW approaches.

5.3.6  The Impact of Using More Relevant Examples. In this research, we have
used the top and bottom ranked documents (in BOW retrieval) as positive and
negative examples in the feature selection process. Naturally, these pseudo-relevant
examples are a practical compromise, as they are assumed to be relevant (or non-
relevant) but may not be so in practice. Ideally, we would prefer to use only
documents indicated as relevant or non-relevant by the user. In considering this
compromise, we were interested in learning more about the possible improvement to
be gained by using better examples, and conducted additional experiments relying
on TREC’s human relevance judgments as “oracle” knowledge.

The retrieval process in these experiments was similar to that described in Sec-
tion 4, except for the choosing of positive examples, for which we added a step
of iterating through the top retrieved documents and selecting only those marked
as relevant for this query in the TREC relevance judgments. Thus, the & positive
examples were chosen from a larger subset of top documents, and were guaranteed
to be relevant. Negative examples are chosen as before, since relevant documents
are very unlikely to appear in the bottom-ranked documents, and it is even less
likely that the bottom ranked documents will be judged at all. We then compare
the results with those using standard pseudo-relevant positive examples.

Figure 22 shows results for the TREC-8 dataset using the IG FS method, with
and without “oracle” relevance knowledge in choosing positive examples. The re-
sults indicate that using verified relevant documents as positive examples indeed
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improves performance by about 10%-15%. In addition, using more examples does
not degrade performance as it did with pseudo-relevant examples (see, for example,
Figure 12), reinforcing our earlier assumption that the decrease in performance was
due to the decreasing relevance of lower ranking documents. This result implies
that there is value in more refined methods of choosing pseudo-relevant examples,
which could be the subject of future work.

5.3.7 Estimating Optimal F'S Performance. ESA-based performance was shown
in Section 4.3 to depend directly on the choice of subset: a better selection process
yielded better performance. It will be safe to assume that further research could
derive even better F'S methods than those described, and consequently better over-
all performance. We believe, therefore, that it would be worthwhile to estimate
how much further improvement can be expected by employing MORAG with better
feature selection methods.

In this final experiment, we iterated across all possible subsets of each query’s
initial features, and instead of using the described FS methods, we evaluated the
subsets with relevance (“oracle”) knowledge to find the one that gives optimal
performance. Naturally, this process cannot be applied in a real-life scenario, but
its results indicate the improvement that might be gained through better feature
selection. Due to computation limitations, we only evaluated subsets of size < 3
out of initial 50 generated features, and subsets of size < 4 of initial 20 generated
features.

Table V shows the results of these experiments. As expected, the performance
of the resulting ESA queries was high, and at MAP of 0.3189 was even higher than
the top keyword-based system we compared to (and far higher than the current
optimal ESA-only result of 0.2223). Furthermore, fusing these results with BOW
systems in MORAG yielded far better results, with improvements in performance of
up to almost 50%.

In addition, comparing the performance of the two experiments (best 4 out of
20 initial features and best 3 out of 50) shows that selecting out of a larger pool of
features worked better despite fewer features being selected. This result indicates
that if superior feature selection capability is available, it would be preferable to
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035 T T T T T T T T
0.3 [;giiii B
025 P D et e

.
02 m
] IG (8=20%) —+——
0.15 | Oracle IG (8=20%) ---x---
' BOW + IG (8=20%) - %
BOW + Oracle |G (8=20%) &~
0.1 L L | 1 1 1 |

5 10 15 20 25 30 35 40 45 50
Positive/negative example set size (k)

Mean Average Precision

Fig. 22. Concept-based performance (IG FS) using pseudo-relevant examples versus true relevant
examples
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Table V. TREC-8 results with several BOW baselines, using optimal (“oracle”) con-
cept subset selection. All results were statistically significant.

BOW  Baseline | MORAG (optimal4/20)) MORAG (optimal3/50)
system (MAP=0.2947) (MAP=0.3189)
Xapian  0.2481 0.3322(+33.9%) 0.3692(+48.8%)

Okapi  0.2787 0.3406(+22.2%) 0.3714(+33.3%)
AT&T 02853 0.3475(+21.8%) 0.3673(+28.7%)
PIRCS 0.3063 0.3568(+16.5%) 0.3792(+23.8%)

select from a longer prefix of the ESA concept vector. Note that a result for subsets
of size < 4 out of 20 features is an upper bound for subsets of size < 3 out of 20,
and thus this finding is valid even though the subset sizes were not identical. For
some queries the optimal subset indeed was a smaller set, occasionally even a single
feature, which indicates that using a uniform selection level parameter (6) is not
an optimal strategy. Future work may investigate methods that utilize a per-query

selection level, possibly using ideas such as query clarity [Cronen-Townsend et al.
2002].

5.3.8 Performance Considerations. An important practical issue for any IR sys-
tem is that of performance. The need to generate and select ESA features at query
time may cause the system response time to become impractical, and the concepts
index that stores concept vectors for documents and passages may incur heavy costs
in storage requirements. We describe the performance measures of MORAG in our
experimental implementation, which turned out to be reasonable even without un-
dertaking any explicit performance-related optimizations.

The system was deployed on a single G5 PowerMac machine with four 2.5GHz
cores and 12GB of RAM; in practice, the multiple cores were utilized only in in-
dexing. In average, generating an ESA-based concept query out of the input text
keywords took about 20-25ms. Most of this time was required for ESA feature
generation, and not on the selection process. Retrieving results based solely on
that concept query (section 4) required an average of 200ms. Fetching results of
the fused concept-based and BOW retrieval (section 5) took, when ignoring the
BOW subsystem time which is system-dependent and can easily be parallelized,
about 450ms. As for disk space, the entire ESA index required about 25GB for
the 520K documents in TREC4-5, while the BOW index took about 16GB (sizes
include indexing of both documents and passages). It should also be noted that we
indexed concepts using their textual labels as tokens which is clearly inefficient, we
kept these long labels for experimentation convenience.

6. RELATED WORK

Early approaches to concept-based IR attempted to leverage pre-existing concep-
tual thesauri such as Wordnet [Miller et al. 1990] for concept representation. Word-
net’s synsets, like ESA concepts, represent real-life semantic human concepts and
provide an intuitive, natural representation. Unlike ESA, the mapping method
was not automatically generated by leveraging an existing resource, but rather by
manual assignment of terms to synsets by Wordnet’s editors. For example, in the
Estonia-related example query, Wordnet’s editors provided the synonymous “Es-
thonia” form for “Estonia,” and “economic system” or “thriftiness” equivalents for
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the different meanings of “economy.” Using such synonyms may assist recall to
some limited extent, but it is clear that the “thriftiness” sense is not the intended
one for the query, and using it would cause the retrieval to drift away, degrading
system performance. Hence, the success of synset-based retrieval depended on word
sense disambiguation methods to select the correct synset in each occurrence. Pre-
vious research has shown inconsistent improvement with this approach [Voorhees
1994; Sanderson 2000], which was mostly found to be successful only when applied
manually [Gonzalo et al. 1998] or augmented by other sources [Mandala et al. 1998;
Stokoe et al. 2003].

A major drawback of manually mapping words to concepts is the great effort in-
vested in achieving good coverage of the domain language. Some researchers chose
to overcome this obstacle by turning to automatic construction of a thesaurus from
the target corpus itself, somewhat similar to the automatic construction of an ESA
model from an external knowledge base (e.g., Wikipedia). Qiu and Frei [1993] de-
scribed a method for extracting a similarity thesaurus based on co-occurrence in
the target corpus, thus obtaining more relevant concepts based on implicit domain
knowledge, and yielding effective improvement. Another variant method combin-
ing the two approaches was suggested in Zhou et al. [2006], where a predefined
dictionary of concepts was augmented with similar terms co-occurring in the cor-
pus. Creating such co-occurrence resources is a computationally expensive process
for large corpora, and one that needs to be constantly repeated for very dynamic
corpora (such as the Web). With ESA-based concept representation the case is
different, as the ESA feature generator is built once, regardless of the actual corpus
used and of corpus changes.

Another automated approach used document ontologies as a source for concept
representation. One example, KeyConcept [Gauch et al. 2003], is a retrieval sys-
tem that maps documents to a limited subset of the concepts represented in the
Open Directory Project? (ODP), using documents categorized to those concepts
as training data for concept classifiers, and conducting search on the augmented
text/concept representation. The use of ODP as a source for concept representation
and automatic mapping has some parallels with our ESA approach, in particular
when considering that ESA was implemented over ODP data as well [Gabrilovich
and Markovitch 2005]. However, the use of a limited concept ontology in KeyCon-
cept resulted in a classifier that was not powerful enough to accurately classify the
(short) queries. Thus query concepts were not automatically generated (as in this
research) but had to be manually assigned by KeyConcept users. Castells et al.
[2007] describe another ontology-based approach, one that makes use of more formal
semantic structures and queries, and combines semantic search with keyword-based
retrieval to compensate for the knowledge base incompleteness. As with KeyCon-
cept, this paper also assumes that semantic queries are created by the system user.
The system was not evaluated on common IR benchmarks or against state-of-the-
art IR systems.

Representing texts using concepts that are words, or explicit syntactic/semantic
classes (such as Wordnet’s synsets or ODP nodes), has the benefit of producing
concepts that are human-readable, easy to analyze and reason about, and can be

9http://dmoz.org
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displayed to a user of such a system. ESA concepts, too, are based on human-defined
natural concepts, as the example concept names throughout this paper show. Yet
concepts may also be defined using latent semantics, with possibly broader concept
coverage. By analyzing the latent relationships between terms in the target corpus,
methods such as Latent Semantic Indexing (LSI) [Deerwester et al. 1990] can project
the term space to a reduced-dimensions concept space, shared by documents and
queries, and thus be applied successfully to the IR task [Dumais 1994; Hofmann
1999).

Like generating an ESA model or a co-occurrence thesaurus, generating an LSI
model for a large corpus involves heavy computation. Unlike ESA, though, the
generated LSI model is corpus-dependent, hence requiring the generation process
to be repeated when the corpus changes or when a different corpus is used. In addi-
tion, beyond a certain size, LSI calculation becomes computationally non-feasible,
as it requires handling a full-scale term to document matrix, whereas ESA model
generation has no such limitation and therefore can build a model with a very rich
language coverage. Finally, the non-explicit nature of resulting concepts makes
LSI difficult to tune and reason about [Dumais 1994]. More recent dimensional-
ity reduction methods applied to IR have included Topic Models approaches [Yi
and Allan 2009] such as Latent Dirichlet Allocation [Wei and Croft 2006] and the
Pachinko Allocation Model [Li and McCallum 2006].

All previously mentioned methods, including the one described in this paper,
apply concept-based analysis to both the indexing and the retrieval stages of IR.
There also exists a large body of research applied to using concepts and ontologies
in the retrieval stage only. Concept-based query expansion methods have been
implemented using corpus-based methods [Qiu and Frei 1993; Grootjen and van der
Weide 2006], domain-specific knowledge sources [Liu and Chu 2005], or an ontology
derived from Web sources such as Wikipedia [Milne et al. 2007]. But methods based
on query expansion, in addition to the aforementioned representation-related issues,
are also vulnerable to expansion-specific problems such as query drift and sensitivity
to parameter tuning [Billerbeck and Zobel 2004].

7. CONCLUSION

We have presented a novel approach to concept-based IR using ESA as a rep-
resentation method, introducing a feature selection component that is based on
pseudo-relevance feedback. We have evaluated the proposed algorithms experimen-
tally and demonstrated their improved performance. We have also estimated the
potential for further improving the results of this approach, and outlined several
insights in this regard that can guide future work.

Concept-based IR using ESA makes use of concepts that encompass human world
knowledge, encoded into resources such as Wikipedia (from which an ESA model
is generated), and that allow intuitive reasoning and analysis. Feature selection
is applied to the query concepts to optimize the representation and remove noise
and ambiguity. The results obtained by our proposed system (MORAG) are signifi-
cantly better than the baselines used, including those of top performing systems in
TREC-8. Analysis of the results shows that improving the performance of the FS
component is possible and will directly lead to even better results. In future work
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we plan to optimize the documents’ representation as well, by leveraging recent
work on compact ESA representations [Liberman and Markovitch 2009).

We believe the results we have shown in Section 5.3, coupled with the potential
improvement demonstrated there, position ESA and the MORAG framework as
promising steps on the road to semantic retrieval solutions. Our work may provide
both a leap in retrieval relevance and a potential shift in the IR paradigm, to one
that is capable of manipulating human concepts rather than keywords only.
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