
Natural Language Generation

by Abstract Machine for

Typed Feature Structures

Evgeniy Gabrilovich

Natural Language Generation by Abstract Machine

for Typed Feature Structures

Project Thesis

Submitted in partial ful�llment of the requirements

for the degree of Master of Science in Computer Science

Evgeniy Gabrilovich

Submitted to the Senate of the Technion | Israel Institute of Technology

Tamuz 5758 Haifa June 1998

The work described herein was supervised by Prof. Nissim Francez under the auspices of
the Faculty of Computer Science

`But \glory" doesn't mean \a nice knock-down argument," ' Alice objected.
`When I use a word,' Humpty Dumpty said in rather a scornful tone, `it means just what I

choose it to mean | neither more nor less.'
`The question is,' said Alice, `whether you can make words mean so many di�erent things.'
`The question is,' said Humpty Dumpty, `which is to be master | that's all.'
Alice was too much puzzled to say anything, so after a minute Humpty Dumpty began again.

`They've a temper, some of them | particularly verbs, they're the proudest | adjectives you can
do anything with, but not verbs | however, I can manage the whole of them!'

{ Lewis Carroll, \Through the Looking Glass"

Acknowledgments

I am beholden to Prof. Nissim Francez for his counsel and guidance throughout this project. I am deeply
grateful to Prof. Francez for teaching me a formal and mathematically precise approach to tackling new
problems. I would also like to thank Prof. Francez for the encouragement he accorded me when I needed it.

I wish to express my gratitude to Prof. Alon Itai for replacing Prof. Francez while he was on sabbatical
leave. I am thankful to Prof. Itai for his time, valuable help, and advice.

I am indebted to Dr. Shuly Wintner for his comments and the constructive review of my work. I am
especially thankful to Dr. Wintner for the inestimable assistance he kindly rendered me when I was working
on the software part of this project.

I wish to thank Dr. Christer Samuelsson for the clari�cation of particularly complex points in his work.
Last but not the least, I owe a debt of gratitude to my parents, Margarita and Solomon, for their tolerance,

love, and concern.

The generous �nancial help of the Technion | Israel Institute of Technology is gratefully acknowledged.

Contents

Abstract 1

List of Abbreviations 2

1 Introduction 3
1.1 Motivation . 3
1.2 Literature survey . 4
1.3 The achievements of the thesis . 7
1.4 Document outline . 8

2 Processing Uni�cation-Based Grammars with an Abstract Machine 9
2.1 A Typed Feature Structure based formalism for uni�cation grammars 9
2.2 Parsing by Abstract Machine . 10
2.3 Generation by Abstract Machine . 11

3 Inversion of Uni�cation-Based Grammars for Generation 13
3.1 Motivation and overview . 13
3.2 Grammar representation and its restrictions . 14

3.2.1 Syntax representation . 14
3.2.2 Semantics representation . 15
3.2.3 Minimum required type hierarchy . 18
3.2.4 Encoding examples . 20

3.3 The sample grammar . 23
3.3.1 Sample grammar type hierarchy . 23
3.3.2 Sample original grammar de�nition . 23
3.3.3 Sample derivation with the original grammar . 25

3.4 Grammar normalization . 26
3.4.1 Motivation . 26
3.4.2 Grammar normal form . 26
3.4.3 Normalization of GO . 27
3.4.4 Observations . 29
3.4.5 Rearrangement rules . 29
3.4.6 Grammar preprocessing . 30
3.4.7 Normalization algorithm . 31
3.4.8 Normalized sample grammar . 32
3.4.9 Sample derivation with the normalized grammar . 34

3.5 Grammar inversion . 36
3.5.1 The nature of inversion . 36
3.5.2 Inversion algorithm . 40
3.5.3 Inverted sample grammar . 41
3.5.4 Sample derivation with the inverted grammar . 43

3.5.5 Advanced issues . 45

4 Chart-Based Generation with Typed Feature Structures 47
4.1 Chart generation . 47

4.1.1 Chart generation vs. chart parsing . 48
4.1.2 Chart operations . 48
4.1.3 Initialization . 49
4.1.4 Verbalization . 51

4.2 The generation algorithm . 51
4.2.1 Terminology . 51
4.2.2 The algorithm . 52

4.3 Sample generation . 53
4.3.1 Chart initialization . 54
4.3.2 Chart generation . 54
4.3.3 Verbalization . 56
4.3.4 Generation of partial phrases . 56

4.4 An abstract machine for chart generation . 56
4.4.1 Augmentation of the Control Module . 57
4.4.2 Application . 58

5 Software Implementation 59
5.1 Generation additions to Amalia . 60

5.1.1 Overview . 60
5.1.2 Functional breakdown of grammar compilation for generation 62
5.1.3 Functional breakdown of the generation cycle . 64

6 Conclusions 66

Appendices 68

A The running example grammar 68
A.1 Listing of the grammar . 68
A.2 Normalization and inversion of the running example grammar 70

A.2.1 Normalized sample grammar . 70
A.2.2 Inverted sample grammar . 73
A.2.3 Connective Registry . 77
A.2.4 Semantics Knowledge Base (SKB) . 77

A.3 Generation examples . 78
A.3.1 Example 1 . 78
A.3.2 Example 2 . 79

B The Montague sample grammar 82
B.1 Montague grammar . 85
B.2 Sample queries . 96

References 103

List of Figures

1.1 The duality of Natural Language Parsing and Generation tasks. 3
1.2 An overview of generation with Abstract Machine. 4

3.1 Minimum required type hierarchy in ALE notation. 18
3.2 Minimum required type hierarchy depicted as a graph. 19

List of Tables

3.1 Terminated chains of combined Ge
N rules. 41

Abstract

Computational Linguistics is the branch both of Computer Science and Linguistics that deals with the com-
putational aspects of natural language phenomena, where one of its goals is to give computers the ability to
properly understand and coherently produce texts. The research in this area aims at describing mathemat-
ically precise and (preferably) computationally e�ective models for representing language communication.
State of the art computer systems are capable of handling texts at a substantial level of language coverage.
The two main directions in contemporary Computational Linguistics are Natural Language Analysis (leading
to Natural Language Understanding) and Generation. The latter (which is the principal object of this work)
is enabling computers to produce natural language texts conveying the semantic meaning given as input.
The generation ability is important in many computer applications: from verbalizing results of a query,
through generating large-scale documentation to (when combined with an analysis module) communicating
with humans.

This work applies the Abstract Machine approach to the problem of Natural Language Generation. Such a
machine is an abstraction over an ordinary computer, lying somewhere between regular high-level language
and common hardware architecture. Programming an Abstract Machine has proved fruitful in previous
research, reaching its recent peak as a highly e�cient technique to build Prolog compilers. This approach
not only yields e�cient computation, it also allows formal veri�cation of the programs written for the
Abstract Machine.

To perform generation e�ciently, we �rst ported an existing algorithm for surface generation, proposed
for a logic programming framework (Samuelsson, 1995), into a uni�cation-based Typed Feature Structure
(TFS) formalism. The algorithm uses two internal grammar transformations of normalization and inversion,
to render the given grammar with a form inherently suitable for generation. We then de�ned a concept
of chart generation, which is similar to the familiar chart parsing. In the case of generation it is the given
semantic meaning whose components are consumed in the process. Finally, a generation module was designed
for the WAM-like Abstract Machine for Natural Language analysis, previously developed in (Wintner, 1997)
having only parsing capabilities. This resulted in an e�cient, bidirectional (parsing/generation) system for
Natural Language Processing.

1

List of Abbreviations

AF Argument-Filling (rule)
ale Attribute Logic Engine
AM Abstract Machine
Amalia Abstract MAchine for LInguistic Applications
AVM Attribute Value Matrix
CF Context Free
CR Connective Registry
DCG De�nite Clause Grammar
DP Designated Path
FI Functor-Introducing (rule)
GUI Graphical User Interface
HPSG Head-Driven Phrase Structure Grammar
LD Lexicon-Derived (rule)
LHS Left Hand Side
MRS Multi-Rooted Structure
NL Natural Language
NLA Natural Language Analysis
NLG Natural Language Generation
NLP Natural Language Processing
RHS Right Hand Side
SHDG Semantic-Head-Driven Generation
SKB Semantics Knowledge Base
TFS Typed Feature Structure
WAM Warren Abstract Machine

2

Chapter 1

Introduction

1.1 Motivation

Contemporary computational linguistics can hardly be imagined without extensive use of computers, which
assist in implementing various models and formalisms for language representation. Considerable progress
has been achieved in recent years when a number of relatively exhaustive linguistic theories have been
introduced. Many of these formalisms describe signi�cantly large fragments of natural language, striving,
whenever possible, to develop language-independent approaches.

The �eld of Natural Language Processing encompasses two main tasks, namely Natural Language Anal-
ysis (NLA) and Natural Language Generation (NLG). The former deals with parsing texts to build their
logical form representation according to the grammar supplied, while the latter addresses issues of creating
texts by computers. The generation task is a relatively new research area, though it has a constantly growing
number of devotees and has a recently established international yearly conference. An input for the gener-
ation task is a logical form which represents the desired meaning, and a grammar to govern the generation
process. The output consists of one or more phrases in the language of the grammar whose meaning is the
given logical form. This duality is illustrated by the sketch in Figure 1.1.

Parsing

Generation

"John smokes" Grammar smoke(john)

Figure 1.1: The duality of Natural Language Parsing and Generation tasks.

Following recent advances in Natural Language Processing, e�orts have been made to formulate a uniform
mechanism for e�ective treatment of both its constituents. In this context, bidirectional grammars, where
a single set of rules allows both parsing and generation, are considered an advantage in the literature
(Shieber, 1988; Strzalkowski, 1994). Such grammars have been traditionally formulated in the De�nite Clause
Grammar (DCG) formalism (Pereira and Shieber, 1987), while recent trends in computational linguistics tend
to adopt uni�cation-based Typed Feature Structure (TFS) formalisms (e.g. (Carpenter, 1992b)), which, in
addition to other bene�ts, pro�t from the numerous advantages of the declarative nature of feature-structure
uni�cation.

3

Grammars are usually given in a form oriented towards the analysis of a string and not towards generation
from a (usually nested) semantic form. In other words, rules re
ect the phrase structure and not the
predicate-argument structure. It is therefore desirable to transform the grammar to enable systematic
re
ection of any given logical form in the productions. To this end we apply an inversion procedure, based
upon (Samuelsson, 1995), to the input grammar, to render the rules with the nested predicate-argument
structure, corresponding to that of input logical forms. The resultant \inverted" grammar is thus most
suitable for performing the generation task. Once the grammar is inverted, the generation process can be
directed by the input semantic form; elements of the input are consumed during generation just like words
are consumed during parsing.

The work presented here applies an Abstract Machine (AM) approach for Natural Language Generation.
Wintner (1997) developed aWAM-like abstract machine (named Amalia|Abstract MAchine for LInguistic
Applications) for Natural Language Parsing. That work proposed using an Abstract Machine within the
framework of Typed Feature Structures, thus enabling parsing with uni�cation-based grammar. As de�ned
in (Wintner, 1997), Amalia performs chart parsing | a general parsing method (also known as tabular
parsing), which stores intermediate parsing results in an auxiliary table ((Aho and Ullman, 1972, pp. 314-
330) contains a discussion of several tabular parsing methods). In this work we devise a similar concept of
chart-based generation algorithm, and use it to extend the machine to also cover the generation direction,
by using the same grammar but with di�erent compilers for parsing and for generation. To use Amalia
as an infrastructure for building the generation module, we had to port the original inversion algorithm
(Samuelsson, 1995) developed for de�nite clause grammars, to a feature-structure framework.

Thereby, the extended machine makes dual use of its chart and forms a complete bidirectional NLP
system. The extended machine is capable of very e�cient processing, since grammars are precompiled
directly into abstract machine instructions, which are subsequently executed over and over.

Figure 1.2 delineates an overview of AM-based generation.

smoke(john)

AMALIA
Logical
form

"John

"John" "smokes"<john,smoke>

smokes"

G G
-1

Inversion

Figure 1.2: An overview of generation with Abstract Machine.

1.2 Literature survey

Historically, early mathematical studies of natural languages introduced context-free grammars as one of
the major frameworks for language description. Their reasonable expressiveness, as well as availability
of techniques for computationally e�ective processing, made these grammars a leading tool for de�ning
programming languages and building e�cient compilers (see, for example, (Aho, Sethi, and Ullman, 1986)).
However, attempts to apply this formalism for describing NL grammars encountered a number of obstacles.
On the one hand, there are natural language constructs that cannot possibly be represented at the context-
free level1. On the other hand, even if a grammar can be described in context-free terms, agreement
constraints between phrase constituents usually lead to a combinatorial explosion of the number of rules, as

1For example, cross-serial dependencies found in Dutch are of the form anbmcndm, which is proved to be non-context-free
(Hopcroft and Ullman, 1979).

4

well as to a loss of generalization. In other words, context-free grammars lack the strong generative power2

featured by the uni�cation grammars, as they do not allow the necessary generalizations to be made about
the structure of natural languages.

Uni�cation grammars present a generalization over context-free ones, by arranging features of language
entities in nested, possibly reentrant descriptions (referred to as feature structures, (Shieber, 1986)). The
power of the enhanced formalism is equivalent to that of Turing Machines (Johnson, 1988). The basic
operation of this approach is uni�cation, which combines (non-contradicting) information of its operands
(referred to as uni�cands). Carpenter (1992b) further extends the notion of feature structures with types,
which are also subject to uni�cation. Typed Feature Structures (TFSs) present a generalization over �rst-
order terms and ordinary (typeless) feature structures. Among the advantages of this approach are the strong
typedness of the whole de�nition and the multiple inheritance hierarchy of all the existing types. In light of
this fact, many techniques of object-oriented programming such as feature inheritance among the types can
be successfully applied. Moreover, handy arti�cial intelligence techniques for contradiction detection and
resolution may be used when traversing the inheritance tree.

Studying recently proposed linguistic theories, we can infer that uni�cation in general has proved to
be a powerful tool (Shieber, 1986). This is partly because the uni�cation framework has been thoroughly
researched by multiple works in logic programming, so the processing of natural language can bene�t from
many achievements in that �eld. Consequently, uni�cation-based formalisms became the leading technique
for characterizing natural language grammars in modern computational linguistics. Lexical Functional Gram-
mar (LFG) (Kaplan and Bresnan, 1982) and Head-Driven Phrase Structure Grammar (HPSG) (Pollard and
Sag, 1994) are two of the more advanced members of this class. The latter has recently become the most
popular linguistic formalism, and currently enjoys a very broad usage, as it covers a wide variety of natural
language phenomena in a particularly clean and sound way. The basic functional units of HPSG are Typed
Feature Structures introduced by Carpenter (1992b). The formalism de�nes a set of universal principles,
which allegedly hold for all natural languages, and which are extendable with additional language-speci�c
rules. HPSG grammars have been developed for a wide variety of languages from di�erent families; a gram-
mar for a small fragment of Hebrew has recently been developed by Wintner (1997). A number of systems are
available that implement uni�cation-based formalisms, and serve environments for grammar design and de-
velopment. Among those are PATR (Shieber, 1986) and Attribute Logic Engine (ALE) (Carpenter, 1992a).
ALE compiles input grammars into Prolog code, which is subsequently invoked under chart parsing strategy.
Today, ALE is a widely accepted platform for developing HPSG grammars.

Chart parsing originated in works by Younger (1967) and Earley (1970) as CYK (Cocke-Younger-Kasami)
and Earley's algorithms, which make use of an auxiliary table (chart) for recording partial processing results.
Refer also to (Pereira and Shieber, 1987, Section 6.6) for a comprehensive discussion of tabular parsing in
NLP. In this work we present a chart generation algorithm, which is conceptually similar to chart parsing in
its use of an ancillary table, though instead of the words of the input string (as in the case of parsing), the
generation procedure consumes parts of the given logical form.

Reiter (1994) gives an overview of a typical NL generation architecture. According to this work, a
complete NLG system combines the following three main3 modules in a pipeline form:

1. Content determination (or text planning) decides what information should be conveyed in the text to be
created. This module usually accomplishes two tasks: deep content determination, which determines
what information should be communicated to the hearer, and rhetorical planning, which organizes this
information in a rhetorically coherent manner. The information chosen at this stage may be expressed
in a number of sentences, hence this module is occasionally referred to as strategic generation, in
contrast to the other two modules which perform tactical generation at the single-sentence level.

2. Sentence planning maps conceptual structures onto linguistic ones, and arranges information into
clauses and sentences. This module also performs lexical selection, i.e., choosing among several syn-
onymic words, expressions or idioms to represent each part of the input meaning.

2Strong generative power is the ability of the grammar to assign \correct" structures to natural language phrases.
3Reiter (1994) also mentions two additional modules, namely morphology and formatting, but those are secondary and far

less common in actual NLG systems.

5

3. Surface generation produces surface forms that communicate the desired information in the form of
grammatically correct sentences.

(Hovy et al., 1995) poses the problem of logical form equivalence as an important theoretical and practical
problem for natural language generation. This is the case when several di�erent logical forms correspond to
the same surface string.

In this work we mean by \generation" what is sometimes known also as \syntactic generation": given
a logical form (and a category)4, use the grammar to construct an expression of the given category in the
language of the grammar, the meaning of which is (up to logical equivalence) the given logical form. Thus,
no text planning, speaker intentions and the like are considered here.

A broad variety of generation algorithms can be found in the literature. An early attempt to combine
parsing and generation in one system using chart techniques may be found in (Shieber, 1988). This work
describes a uniform architecture for both tasks, built around an Earley-style left-to-right chart scheme.
Since the nested nature of logical forms (that serve input for generation) is not inherently suitable for
chart processing, the system yields generation capability at the expense of e�ciency. Semantic-head-driven
generation (SHDG) introduced by Shieber et al. (1990) is more e�cient, as it is naturally controlled by
(parts of) the input semantics. Two examples of works that combine chart-based Earley deduction with
semantic-head-driven approaches (mixed top-down and bottom-up strategies) while using the same grammar
for both parsing and generation are (Gerdemann, 1991) and (Neumann, 1994). In the latter work parsing
and generation operate on the very same chart and can share items using a uniform indexing mechanism for
the retrieval of already completed subgoals (called lemmas of the Earley deduction). In the case of parsing
lemmas are indexed using string information, and in the case of generation they are accessed using semantic
information. Item sharing enables integration of parsing and generation into an interleaved processing
scheme, which may be bene�cially used to handle monitoring, revision or generation of paraphrases.

Samuelsson (1995) augmented the SHDG algorithm with a preprocessing procedure, which �lters out
impossible generation scenarios and reduces spurious search. In his work, Samuelsson (1995) presents a
method for normalizing and then inverting the given grammar, so that it can be used by an LR5 (recursive-
descent) generation algorithm. Popowich (1996) describes a chart generator for Shake-and-Bake machine
translation, where generation is performed from semantic constituents (called signs) stored in a bag6. Since
the bag is not ordered, arbitrary numbering of signs is introduced, and the generator ensures that each sign
is used exactly once in the sentence created. The process of generation is governed by the semantic indices
of signs, which constrain the way signs may join one another. Kay (1996) describes another chart generation
algorithm whose input is
at representation of logical forms, like that used for transfer in Shake-and-Bake
translation (Whitelock, 1992). Since constituents of
at semantics are unordered, generating from such input
can be seen as parsing a language with absolutely free word order. To prevent combinatorial explosion of
time complexity (due to the exponential number of interactions between chart edges), Kay (1996) introduces
a notion of indexing. The approach distinguishes between internal indices, which are unaccessible outside
a category, and external indices otherwise. The generation algorithm then ensures that each complete edge
subsumes all the predicates indexed by the indices internal to this edge. This allows to avoid a lot of spurious
search, which results from generating incomplete expressions that leave out parts of the input which cannot
be added later. Trujillo (1997) proposes an algorithm to compute the necessary indices automatically, instead
of requiring this information to be speci�ed explicitly by the grammar designer. As opposed to the chart
generation algorithms outlined above, in our work semantic constituents are ordered (the ordering being
induced by recursive processing of the given logical form) and can only join in one way.

As mentioned above, this work uses an adaptation of the surface generation algorithm due to Samuelsson
(1995) for a feature-structure framework. To mention other uni�cation-based approaches to generation,
Elhadad (1989) presents a feature-based generation framework - Functional Uni�cation Formalism (FUF),
based on the functional uni�cation grammar. Calder, Reape, and Zeevat (1989) present an algorithm for
generation in uni�cation categorial grammar.

4In an extended sense, namely, a feature structure.
5(Aho, Sethi, and Ullman, 1986, Section 4.7) contains a comprehensive review of LR parsing.
6A bag is a multi-set, i.e., an unordered sequence of items with possible repetitions.

6

Normally, the generation process starts from a logical form encoding some semantic meaning. It is
therefore important to develop a notation for representing semantic objects, that posesses adequate linguistic
felicity and expressive power. To this end, we model our semantic interpretation along the guidelines of
Montague semantics (Gamut, 1991, Chapter 5)7, which is based on �-calculus. �-reduction applied during
rule invocation is built into the grammar rules per se, and is thus implicit. The fact that Montague's
grammars are purely compositional constitutes an advantage, as it facilitates decomposition of complex
logical forms into basic semantic primitives. To encode Montague semantics with feature structures we
employ a notation very similar to that of (Nerbonne, 1992).

As mentioned above, our NL generator extends Amalia | an abstract machine for parsing designed
by Wintner (1997). Such machines constitute a trade o� between high-level programming languages on
one hand, and low-level computer architecture on the other hand. De�ned as such, AM bene�ts from
both directions: while it can be conveniently programmed in a familiar high-level style, its code can be
easily converted into a real computer assembly. Programming an Abstract Machine has proved fruitful in
previous research, especially for implementing programming languages. Starting from a P-Code machine for
Pascal, AM techniques were employed for a number of languages belonging to various paradigms. Warren
(1983) devised an abstract machine for Prolog, which over the years turned a de facto standard for building
compilers for the language. The Abstract Machine approach not only yields e�cient computation, it also
permits formal veri�cation of the programs written for the AM.

1.3 The achievements of the thesis

The work reported herein is aimed at applying the Abstract Machine approach to the problem of Natural
Language Generation. The goal of this project was to enrich and enhance the original Amalia to work also
in the reverse direction. That is, given a TFS-encoded semantic representation to be able to generate a
natural language phrase expressing it.

The contribution of the this thesis is threefold:

� First, it ported an existing algorithm for grammar inversion (due to Samuelsson (1995)) to a uni�cation-
based Typed Feature Structure framework similar to ALE. Such frameworks are considered by the
computational linguistics community more suitable for grammar design than the DCG formalism, in
which the algorithm has been formulated originally (Shieber, 1986).

To prevent combinatorial explosion of generation rules, Samuelsson proposed to introduce a typing of
logical forms. To this end we augmented the original algorithm by making use of the \object-oriented"
nature of our TFS-based formalism. The type hierarchy is employed to decrease the number of di�erent
grammar rules at various processing stages. Thus, for example, a single grammar rule is su�cient for
treating transitive verbs, so there is no need to specify a separate rule for each transitive verb in the
lexicon.

� Second, the thesis de�ned a notion of chart generation, operating on the grammars inverted according
to the above algorithm. This scheme was de�ned with Amalia's parsing functionality in mind, so that
the two processing directions could be linked together into a single structure.

� Finally, Amalia was actually extended so that it became capable of performing generation of natural
language constructs. That is, a compiler was written, that given a semantic formula F translates the
input grammar to the abstract machine program P , an invocation of which produces a sentence whose
meaning is F . The existing core activity of uni�cation now works for both directions. It turned out
that no new commands had to be added to Amalia's de�nition, and the augmentation was only in
the control.

The combination of analysis and generation components using the same uni�cation-based grammar forms
a complete and computationally e�ective system for Natural Language Processing. The Abstract Machine

7Although intensionality is beyond the scope of the sample grammars considered.

7

approach also renders the entire system platform-independent, so that it can be easily implemented on any
speci�c computer architecture.

Extending the existing code, we implemented the system in the ANSI-C programming language. The
uni�ed Amalia uses the (YACC-based) input acquisition module of the original one, hence the same subset
of ALE grammar speci�cation language is provided. The application was tested on Sun and Silicon

Graphics workstations running UNIX operating system, as well as on an IBM PC running Windows'95

and LINUX. Exactly as native Amalia, the enhanced product supports graphical user interface and batch
modes, to facilitate both grammar development and aggregate (analysis/generation) processing.

(Wintner, Gabrilovich, and Francez, 1997a) describes Amalia as a uni�ed platform for parsing and
generation, elaborating more on the way the two directions are integrated into a single system. (Wintner,
Gabrilovich, and Francez, 1997b) contains a user manual for the software.

1.4 Document outline

The theory of Typed Feature Structures is reviewed in Chapter 2. This chapter also gives a short survey of
Amalia along the guidelines of (Wintner, 1997), as well as hints on how it can be enhanced with generation
capabilities.

Chapter 3 gives an account of grammar inversion, and explains how the algorithm proposed in (Samuels-
son, 1995) was ported to a uni�cation formalism. To assist the reader, a simple running example accompanies
all the grammar transformations initiated by the algorithm. Chart-based generation with Typed Feature
Structures is described in Chapter 4. First, the generation algorithm is presented, and then changes in
Amalia control are described, which were necessary to incorporate the generation module.

The software implementation of the generation extensions to Amalia is given in Chapter 5. This part
of the document details the data and control
ow throughout the system, as well as depicts main functions
and data structures used. Finally, Chapter 6 outlines conclusions and proposes possible further research
directions. Appendix A contains the running example grammar and the results of sample generation with this
grammar (including the intermediate inversion results). An additional sample grammar, which incorporates
Montague semantics and covers more linguistic phenomena, is shown in Appendix B.

8

Chapter 2

Processing Uni�cation-Based

Grammars with an Abstract Machine

This chapter describes how the existing Abstract Machine for parsing uni�cation-based grammars has been
extended with generation capabilities. To this end, we �rst review the uni�cation formalism in which
grammars are encoded (Section 2.1), and how such grammars can be parsed using the Amalia abstract
machine due to Wintner (1997) (Section 2.2). Finally, Section 2.3 explains how the control strategy of
Amalia was augmented to perform generation as well.

2.1 A Typed Feature Structure based formalism for uni�cation

grammars

In this work we encode grammars with Typed Feature Structures (TFS). The notion of TFSs was formulated
in (Carpenter, 1992b), and is brie
y reviewed here. TFSs di�er from ordinary feature structures (Shieber,
1986) in that each structure is associated with a type. A typed feature structure is a directed, connected,
rooted, �nite graph, whose vertices are labeled with types and edges are labeled with features. A bounded
complete partial order (referred to as type hierarchy) de�nes how feature structures can be constructed of
types and features. According to the type hierarchy, each type has a (possibly empty) list of appropriate
features, and each feature is assigned the most general type which is appropriate as its value. Types may
have subtypes which necessarily inherit their features; multiple inheritance is also possible when a single type
simultaneously inherits from several other types. For this reason the type hierarchy is occasionally called
inheritance hierarchy. Two criteria are available to verify whether a feature structure is well-formed according
to the given type hierarchy. The �rst criterion de�nes well-typed feature structures, so that whenever an edge
f connects two vertices v1 and v2, f is appropriate for type(v1), and the type appropriate for f in type(v1)
subsumes type(v2). The second one de�nes totally well-typed feature structures as well-typed FSs, in which
whenever a feature f is appropriate for the type of a vertex v, there is an edge starting at v and labeled
with f .

Paths in typed feature structures are (possibly empty) �nite sequences of feature names, which correspond
to sequences of edges in the underlying graph. A path is full if it starts from the root of the graph, or partial
if it starts from any other vertex. In general, TFSs may contain cycles (i.e., the underlying graph contains
directed cyclic paths) and reentrancies. The common concepts of subsumption and uni�cation are naturally
extended for TFSs.

To use Typed Feature Structures for encoding Natural Language Grammars, one needs a way to represent
grammar rules within the formalism. Wintner (1997) de�nes multi-rooted feature structures as a generaliza-
tion of TFSs that provides a convenient notation for the rules. A multi-rooted structure (MRS) is a �nite,
directed, labeled graph with an ordered list of designated vertices called roots. The graph is not necessarily
connected, but each vertex has to be accessible from at least one of the roots. Apparently, grammar rules

9

can be naturally represented with such structures. Each rule constituent (either the head or a body element)
is represented with a feature structure, which are combined into a single multi-rooted structure. The roots
of a MRS are those of the constituent FSs, and their ordering is induced by the original rule. The length
of an MRS is the number of its roots. Feature structures inside an MRS may contain reentrancies, which
represent values shared among the constituents of the rule.

Grammars are represented in this formalism as triples G = fTH;R;Lg, where TH is a type hierarchy,
R is a set of rules and L is a lexicon. A rule is a multi-rooted structure of positive length; the distinguished
�rst element of the MRS serves the rule head, and the rest of the elements comprise the body of the rule.
"-rules are also allowed under this de�nition, and are represented as MRSs of length 1 (rules having only a
head and no body). Lexicon items may also be viewed as MRSs of length 1, where the only MRS element
corresponds to a feature structure which the lexicon assigns to the given word. In the case of ambiguous
words, several lexicon items might be required to describe a single word.

Syntax and semantics are encoded1 in uni�cation grammars through features of the MRSs which represent
the rules. For instance, each rule constituent in the running example grammar has the features syn and sem
de�ned, which encode the syntactic and semantic properties of this constituent, respectively. The cat feature
under syn encodes categories of the context-free backbone of the grammar. For the sake of briefness we
occasionally abbreviate grammar rules and only show their context-free backbone, instead of the entire MRS
(e.g., NP V P) S). It should be observed that in such cases each CF variable (e.g., V P) encodes an entire
feature structure rather than the syntactic category per se.

2.2 Parsing by Abstract Machine

In his work, Wintner (1997) devised an abstract machine for parsing uni�cation grammars. The machine,
called Amalia (the acronym stands for \Abstract MAchine for LInguistic Applications"), is speci�cally
designed for executing grammars, encoded in (a subset of) ALE's language (Carpenter, 1992a). Amalia
incorporates a compiler of input grammars into abstract machine instructions, and an interpreter for these
instructions. Compilation constitutes a preprocessing phase { once compiled, grammars can be executed
(interpreted) very e�ciently. The interpreter implements a bottom-up chart parsing; special-purpose AM
instructions are available to realize this control strategy. These instructions are responsible for e�ecting the
regular chart operations, as well as for edge management (going over active and complete edges). Edges are
induced by grammar rules and span a subsequence of the input string, assigning it some structure. Each
edge contains the MRS representing a grammar rule plus some auxiliary information. In an active edge, a
dot separates the already processed constituents from all the rest. The operation which takes an active edge
and a complete edge, and moves the dot one position further to the right in the former (over the constituent
which uni�es with the complete edge) is called dot movement. When the dot reaches the position after
the last body constituent, the completion operation is invoked to construct the head of the rule and create
a complete edge. Both kinds of edges are recorded in the chart. The machine also uses a heap-like data
structure (referred to as the heap), which constitutes the main memory of the machine and hosts all the
feature structures built during the parsing process.

Given the input string of words, the parser performs lexical lookup, and each word is associated with a
FS (or a set of FSs if the word is ambiguous). In the scanning phase, a complete edge is created for each
such feature structure, and is then inserted into the appropriate cell on the main diagonal of the chart. The
prediction phase creates active edges which anticipate in each cell of the main diagonal every possible rule.
From here on, the standard chart parsing algorithm is invoked (cf. (Pereira and Shieber, 1987, Section 6.6))
which alternatively applies dot movement and completion operations. If parsing terminates, it ends up with
a (possibly empty) set of feature structures, spanning the entire input.

1See Section 3.2 for a discussion of syntax and semantics representation in uni�cation grammars.

10

2.3 Generation by Abstract Machine

In this work we de�ne the concept of chart generation and extend Amalia (as presented in (Wintner, 1997))
with generation capabilities. The major observation which enables such dual usage of the machine is that
the dot movement operation can be interpreted di�erently, depending on the nature of the chart items.

First, to transform grammars (initially designed for parsing) into a form more suitable for generation,
we apply an inversion procedure based on (Samuelsson, 1995), which renders the rules with the nested
predicate-argument structure, corresponding to that of input logical forms. The generation process can then
be directed by the input semantic form. The inversion procedure is performed immediately before grammar
compilation. The original Amalia's compiler then produces code for the inverted grammar using exactly the
same machine language as for parsing grammars. Thus the same grammar can be compiled into two di�erent
object programs (abstract machine instructions) for the two di�erent tasks (parsing and generation).

For generation, the input is a logical form represented as (an ALE description of) a feature structure.
We assume such a form to have a nested predicate-argument structure, therefore it can be systematically
decomposed into semantic meaning primitives (predicates and arguments) along the lines of this structure.
This decomposition also induces some prede�ned ordering on the resultant sequence of meaning components.
The chart is then initialized with complete edges that correspond to elements of this sequence rather than
to words (as in the case of parsing). Thus each complete edge in the chart represents some part of the input
semantic form.

Now we establish the similarity between parsing with ordinary grammars and generation with inverted
ones. In both cases the input is divided into integral subparts, which are systematically consumed during
parsing/generation according to the rules of the appropriate grammar. Chart processing algorithm can also
be adapted for generation. Items originating from execution of a program created by the parsing compiler
have their usual meaning. On the other hand, items generated by the execution of a program due to the
generation compiler have a di�erent meaning. They do not span a part of a given string as in the case of
parsing; instead, they span a subform of the input semantic form, assigning it a structure that eventually
determines a phrase whose meaning is that subform.

When the interpreter operates on a program that was generated from an inverted grammar, it executes
the program in precisely the same way it would any other program { only the initialization of the machine's
state and the format of the �nal results di�er. Once the chart is initialized, the same processing strategy
is applied independently of the task: the compiled program is executed on the input (also referred to as
the query). The basic operation performed by the object program is uni�cation, which is required for both
tasks. Uni�cation implements the dot movement operation which is essential to both chart parsing and
generation. As explained above, dot movement is interpreted in distinct ways for the two tasks, since the
(compiled) grammar rules are essentially di�erent. It must be noted however, that the execution of the
abstract machine is indi�erent to this variation of interpretation { at run-time there is no notion of the
particular task (parsing/generation), and the e�ect of the machine instructions is the same for both tasks.
It is the ability to use the same chart core engine for both tasks that constitutes the most important feature
of our work.

If generation terminates, the chart algorithm yields a (possibly empty) set of feature structures spanning
the entire generation input; that is, the resultant FSs have been built using all the components of the given
logical form. According to the grammar inversion algorithm, each such FS has a special-purpose feature
(denoted str in the sequel) that encodes a list of words comprising the phrase generated. Values of this
feature are tree-like structures, which are further processed by an auxiliary procedure (external to the chart
algorithm and only applied in the case of generation) in order to obtain the generated phrase per se. When
the str feature is ultimately used to reconstruct the generated phrase, no further use is made of the grammar.

With the above augmentation, Amalia2 allows bidirectional processing of natural language grammars
and comprises a uni�ed platform for Natural Language Parsing and Generation. Using the same uni�cation-
based grammar for both analysis and generation is considered advantageous in the literature. Strzalkowski
(1994) lists three options for grammar reversibility:

2From now on, we use the term \Amalia" to refer to the extended machine version capable of both parsing and generation.

11

� A grammar is compiled into two separate programs, parser and generator, requiring a di�erent evalu-
ation strategy;

� The parser and the generator are separate programs, executed using the same evaluation strategy;

� The parser and the generator are one program, and the evaluation strategy can run it in either direction.

Amalia apparently realizes the second option: a single input grammar is compiled into two di�erent
(AM object) programs. The two programs are executed using exactly the same mechanism (the interpreter
of abstract machine instructions), and therefore employ the same evaluation strategy. While there are indeed
two di�erent object programs, it should be observed that they are produced automatically by the compiler.
As noted above, the di�erences between parsing and generation are limited to the initialization of the
machine's state before the chart algorithm is invoked, and the interpretation of the �nal results thereafter.

12

Chapter 3

Inversion of Uni�cation-Based

Grammars for Generation

This chapter explains the process of grammar inversion, which transforms parsing grammars into a form
more suitable for e�cient generation. Section 3.1 presents motivation for using inversion and gives an
overview of the inversion procedure. The way we encode grammars and the constraints imposed on grammar
representation by the inversion algorithm are discussed in Section 3.2. Section 3.3 describes the sample
grammar which serves as a running example for visualizing inversion steps; encoding of grammar rules in the
TFS-based formalism is also shown in this section. Sections 3.4 and 3.5 explicate the two phases of grammar
inversion, namely normalization and inversion proper, respectively.

3.1 Motivation and overview

Parsing grammars are usually given in a form oriented towards the analysis of a (linear) string and not
towards generation from a (usually nested) logical form. In other words, grammar rules re
ect the surface
phrase structure and not the predicate-argument structure. Consider, for example, a phrase U = \John
smokes", whose meaning is f = smoke(john), created with a rule1 NP V P) S. The phrase can obviously
be analyzed (parsed) using this rule in a straightforward manner. The meaning f of the phrase is obtained
during parsing by applying the meaning of the verb (�x:smoke(x)) to that of the noun (john), and performing
a �-reduction: �x:smoke(x) (john) = smoke(john).

On the other hand, if we want to generate U from its meaning f , it is di�cult to predict that this
particular rule should be used, as nothing in its body matches the nested structure of f . Examining the
structure of f , we can discern the predicate smoke operating on the argument john, so that the application of
the former to the latter forms a so-called predicate-argument structure. If the above rule could be restructured
in a way to mirror this predicate-argument structure, for instance V P (NP)) S, and if the elements of the
predicate-argument structure could be associated with a syntactic verb and noun, the body of the resultant
rule would become readily applicable to the logical form f .

Such a transformation procedure was �rst proposed by Samuelsson (1995) for De�nite Clause Grammars.
The technique restructures (\inverts") grammar rules, so that their surface appearance resemble the nested
structure of logical forms. The inverted grammar enables systematic re
ection of any given logical form in
the productions. Once the grammar is inverted, the generation process can be directed by the input logical
form; elements of the input are consumed during generation just like words are consumed during parsing.

The process of grammar inversion is two staged:

1. First, each grammar rule is normalized { its constituent feature structures and the entire surface
form are reorganized to form a predicate-argument structure. The normalization phase distinguishes

1For brevity sake only the context-free backbone of the rules is shown here.

13

between two types of rules:

(a) Chain rules, where the semantics of the rule head is reentrant with that of at most one body
constituent, called the semantic head.

(b) Non-chain rules, otherwise.

Each constituent of an original rule is enhanced with two additional features:

(a) args, whose values are lists of arguments, which are passed between logical forms during deriva-
tions;

(b) str, whose values encode sequences of words spanned by the semantic form of the feature structure.

In chain rules, all the body constituents (apart from the semantic head) are converted into arguments
of the semantic head; thus all such rules become unit rules. In non-chain rules, a provision is made for
argument passing. The normalized versions of chain rules are referred to as Argument-Filling (AF),
and those of non-chain rules as Functor-Introducing (FI) ones.

Three auxiliary rearrangement rules are added to the �nal normalized grammar, which are ultimately
removed in the inverted grammar. These rules are grammar-independent, and their sole purpose is
to allow derivations with normalized grammars by handling the arguments passed between sentential
forms.

2. The inverted grammar is then obtained from the normalized one, by concatenating normalized rules
into chains and creating a new (\inverted") rule from the two ends of each such chain. Speci�cally, the
inversion phase examines various sequences (chains) of AF rules terminated with FI ones. The aim is
to restructure the rules in the manner which allows systematical traversing (\parsing") of logical forms.
As a result, whenever the head of an inverted rule represents a logical form (in the predicate-argument
notation, i.e., a predicate applied to its arguments), the rule body has a constituent corresponding to
each of the head arguments, as well as an additional constituent corresponding to the predicate itself.
This allows decomposition of complex logical forms into series of semantic primitives, and facilitates
e�cient generation by consuming the semantic predicate and then recursively consuming its arguments.

The inversion phase evaluates all the possibilities to link together AF rules in chains ending with FI
rules. Therefore, the inverted grammar contains only rules that correspond to the chains potentially
useful for generation. It should also be noted that chain combination makes the rules along the chains
more speci�c, due to the uni�cations performed in the process. Thus the inverted rules induced by
these chains are at least as speci�c as their normalized predecessors linked in the chains.

3.2 Grammar representation and its restrictions

This section describes adaptation of the grammar inversion algorithm de�ned in (Samuelsson, 1995) to our
TFS-based formalism. We exemplify all the grammar transformations discussed by performing them on a
sample grammar used as a running example. In what follows, GO is used as a meta-variable ranging over
original grammars, and GN and GI for their respective normalized and inverted versions. Ge

O , G
e
N and Ge

I

refer to the grammars of the running example.

3.2.1 Syntax representation

We encode input grammars with TFSs, where rules are represented using Multi-Rooted Structures (cf.
Section 2.1). To ease the presentation we introduce a number of notational conventions. Throughout the
document grammar rules are shown so that the rule head is always on the RHS and the body is on the
LHS. Grammar rules are usually of the general form (B1B2 : : : Bm) H), where H is the rule head and
Bi are body constituents. PATR convention (Shieber, 1986) is employed for feature path values, thus
< fs Feat1 Feat2 : : : Featn > denotes the value located at the end of the feature path Feat1 Feat2 : : : Featn,

14

starting from the topmost level of the feature structure fs. Whenever an unbound variable appears in a rule,
its �rst occurrence is labeled with the most general type this variable can take. Optional reentrancy tags

(i) denote values shared among several feature structures.
We assume that each FS in GO has the features syn and sem de�ned, and that the former has the cat

feature, whose values are categories of a context-free backbone. The sem feature encodes semantics which
guides the process of grammar inversion and constitutes the input for generation; the syn feature is utilized
by the grammar inversion algorithm (see Section 3.5.1). The formalism has no notion of the initial symbol,
although one is supplied with Ge

O to demonstrate derivations; the < : : : syn cat > value of the initial symbol
is denoted by s.

3.2.2 Semantics representation

Predicate-argument structure

We assume that the logical forms speci�ed as meanings by the input grammar (GO) are given in a so-
called predicate-argument structure. Such a structure is analogous to the familiar representation of semantic
logical forms with �rst-order terms. This way the semantics is built from basic units (FSs), each having a
predicate and (optionally) a number of arguments. This assumption is crucial for both grammar inversion and
generation. It allows the generation algorithm to decompose its input logical form into a sequence of meaning
primitives (predicates and arguments), to be systematically consumed during generation. Accordingly, the
grammar inversion algorithm relies on this assumption to restructure grammars into a form inherently
suitable for generation. The predicate feature is denoted pred and the arguments (if present) are denoted as
arg1, arg2 etc. Predicates may be scalar2 feature structures or complex ones, having several levels of nested
FSs. Arguments may either appear on the same level as the predicate or be deeply embedded in one of
the inner levels. The values appropriate for the features pred and argi are of type [sem] (the most general
semantics type). During generation, semantic forms are decomposed into meaning primitives along the argi
pointers of the predicate-argument structure.

We emphasize that the predicate-argument structure re
ects the way semantic forms are built from
argument primitives and predicates that act upon them. In grammar rules, we assume the semantics of the
head to be formed of a predicate and (possibly) a number of arguments, while each argument corresponds
to some body constituent. In MRS notation, the semantics of an argument is reentrant with that of the
body constituent to which it corresponds. If there is also a body constituent corresponding to (and reentrant
with) the predicate of the rule head, the rule is called a chain one; otherwise, the rule is non-chain.

Our formalism allows �-abstractions over predicate-argument constructs. These are represented as FSs
of the appropriate type (�-bind), having two features: var, encoding the �-variable, and rest, encoding the
restriction on this variable. Values of the latter are either another �-binder or a predicate-argument structure
as de�ned above. Examples of encoding �-expressions are shown in Section 3.2.4.

Consider, for instance, rule O2 = NP V P) S of the running example grammar (see Section 3.3), which
presents an example of a chain rule :

2
664

phrase

syn :

h
syn

cat :

�
np

�i
sem : 5

�
sem

�
str : 3

�
list

�

3
775

2
666664

phrase

syn :

h
syn

cat :

�
vp

�i
sem :

"
�-bind

var : 5

rest : 6
�
funct

�
#

str : 4
�
list

�

3
777775 =)

2
664

phrase

syn :

h
syn

cat :

�
s

�i
sem : 6

str : < 3 ; 4 >

3
775

The semantics of V P is given by �x:P (x), where the �-variable x (designated with the tag 5) is
reentrant with the semantics of NP . This rule is a chain rule due to the reentrancy between < S sem >
and < V P sem rest >, which is marked with the tag 6 .

�-reductions (which actually apply �-expressions to their arguments) are built into grammar rules. During
derivation, the predicate P and the �-variable x in the above example are instantiated to speci�c semantic

2We refer to one-level (not nested) feature structures as scalar ones.

15

forms, and the resultant expression P (x) becomes the semantics of S. This creates an apparent anomaly:
instead of a �-variable we have an instantiated expression, which is reentrant with the semantics of NP .
This irregularity is eliminated when the body of the rule is replaced by its head.

In the MRS representing the rule, the semantics of the head (P (x)) is reentrant with that of the second
body constituent modulo the �-abstraction over the latter. The �-binder disappears after the �-reduction
incorporated into the rule, therefore we ignore it when checking for reentrancy between the head and body
constituents.

The formalism also allows systematical encoding of second- and higher order functions, in addition to
�rst-order ones. A sample encoding of a second-order expression is given in Section 3.2.4 (item 4).

Because of the predicate-argument structure of logical forms it is possible to analyze them as follows.
Each such form is represented by a semantic core that contains the predicate and its arguments, possibly
embedded inside an envelope of nested �-binders abstracting over the core. In the above example, P (x) is
the semantic core of the �-expression �x:P (x) (see also examples in Section 3.2.4 below).

Several steps of the normalization algorithm require direct access to the semantic core, bypassing the
outer envelope. To this end we de�ne the notion of a designated path (DP) which connects the semantic
core to the topmost level of the feature structure. The designated path is comprised of the feature sem and
a (possibly empty) contiguous sequence of designated3 features (rest): for a given feature structure f , its
semantic core is < f sem rest� >, where rest� denotes the sequence of designated features. Whenever we
wish to emphasize the semantic core of an example FS, we mark it with double brackets: [[: : :]].

The notion of the designated path implies the test to distinguish between chain and non-chain rules. In
the light of the above discussion, we need to check reentrancy between the designated paths of the head and
of the body constituents of a rule. Observe that according to the de�nition, two di�erent paths �1 and �2
are reentrant in a MRS A (denoted reentrant(�1; �2)) if they share the same value. For example, rule
O2 = B1B2) H is a chain rule due to the reentrancy of the designated paths: reentrant(< H sem >;<
B2 sem rest >). On the other hand, in rule O3 the designated path of the head (< H sem rest >) is not
reentrant with that of any body constituent, therefore the rule is non-chain.

To end this description of coding the semantics, we outline special treatment for quanti�ed variables.
Ultimately, the chart generation algorithm needs to be able to distinguish quanti�ed variables, so that they
are not entered into the chart during initialization. The reason is that since they do not correspond to any
actual semantic primitive (see below), they cannot be used in scanning to match a body constituent of some
rule. Hence we require that quanti�ers explicitly introduce the variables they bind, by means of a var feature
in the FS of the quanti�er. The scope of a quanti�ed variable de�ned this way is all the nested levels beneath
the one in which it is introduced.

Semantic primitives

Logical forms, which represent meanings of sentences derivable by a given grammar, are encoded with a set of
semantic primitives. Such a set is �xed for each grammar and can be deduced from the grammar speci�cation.
The primitives may be of one of two kinds: most of them represent meanings of lexical constants (e.g., john,
smoke, today), while the rest serve as connectives4 which aid in building complex meaning forms (e.g., mod,
which modi�es its �rst argument with the second one). Primitives of the latter kind are not directly related
to any lexicon entry, therefore they need not have explicit representation in the generated string. Thus, such
connectives demonstrate that there doesn't have to be a one-to-one correspondence between logical forms
and surface structure. The role of connectives is to connect other meaning components together.

We therefore require that apart from the lexicon, a Connective Registry (CR) be supplied5 with the
grammar which encompasses the possible uses of the connectives (for instance, some may be applicable to
constants, others to predicates etc.). A CR item is actually a connective usage signature, similar to the type
signatures like (e; (e; t)) or ((e; t); t) used in Montague semantics (Gamut, 1991, Chapter 5). The de�nition

3The underlined font denotes the designated semantic feature (rest) in AVMs of the running example.
4Not necessarily restricted to boolean connectives.
5In principle, the Connective Registry may be automatically deduced from the grammar speci�cation. To simplify things,

we currently supply it as a part of the input grammar.

16

of the designated path is naturally extended to also cover the CR items. Each CR entry is a feature structure
giving the full representation of the primitive being de�ned.

An example of connective usage as well as a corresponding entry of the Connective Registry is given in
Section 3.2.4. The speci�cation of the sample grammar in Appendix A contains a Connective Registry as
its last section.

Auxiliary (grammar-independent) features

Two additional features are required for the inversion algorithm to work:

1. To allow propagation of arguments between logical forms, the args feature encodes lists6 of arguments
which are collected along the chains of AF rules and passed to their respective functors (supplied by
FI rules terminating the chains).

2. Since the rules of GO are restructured during normalization (in particular, some body elements of
the original rules are converted to arguments of the others), a mechanism is necessary to trace the
constituent order of the original rule. It is this order that controls how words are combined to form
phrases during generation. The str feature is used to achieve this aim by encoding ordered sequences
of semantic primitives, each corresponding to some lexical item. A phrase spanned by a FS can be pro-
duced by analyzing the str elements, retrieving the respective words from the lexicon and concatenating
them. Values of the str feature are of type [list].

Both auxiliary features are to be further explained in Section 3.4.
From a practical point of view, the grammar inversion module could automatically extend the type

hierarchy of any given grammar with these features and their appropriate types. Nevertheless, in order to
ensure consistency and total well-typedness7 we require the auxiliary features and types to be already present
in input grammars (see Section 3.2.3).

Feature coloring

For inversion to work correctly, it needs the ability to distinguish between various classes of features (i.e.,
syntactic, semantic etc.). To this end we introduce \coloring" of features that stem from the topmost level,
so that all the features in the same class (e.g., syn, sem etc.) get the same color8. The classes need not
be pairwise disjoint, and possible reentrancy among them results in \multi-colored" features. On the other
hand, we do require that all the distinct classes present in a particular feature structure originate at the
topmost level. For example, it is not allowed for semantic features to originate from features rooted at syn. It
should be emphasized that both feature coloring and the choice of \designated" features have to be provided
by the grammar designer. To demonstrate feature coloring, we �x an order in which features appear at the
topmost level of all the FSs involved (in our example the order is syn, sem, str, args). The �rst feature in
this order (syn) is assigned color1, the second - color2 and so on.

Presentation notes

Throughout the paper we utilize di�erent fonts as follows:

� The Sans serif font is used for natural language phrases, e.g., \John smokes".

� Boldface is used for type names (e.g., args), and lowercase italics is used for feature names (e.g., str).
In addition to that, the name of the designated feature is underlined (rest).

� Names of feature structures (e.g., f or �) and categories of the context-free backbone (e.g., V P or
AdvP) are typeset in math mode.

6Actually, values of the args feature are stacks, since those are easier to implement within a TFS-based formalism.
7Cf. Section 2.1.
8In the running example, the features under syn, sem, str and args get colored in four di�erent colors, groupwise.

17

� The typewriter font denotes logical forms (e.g., smoke(john)).

� Finally, the Small Caps font is used to typeset product names (e.g., Amalia or ale).

3.2.3 Minimum required type hierarchy

The above assumptions induce some constraints on the type hierarchy of input grammars. It is therefore
possible to formulate a fragment of the type hierarchy that every grammar must include in order to be
invertible. The obligatory minimum type hierarchy in ALE notation is shown in Figure 3.1, and is depicted
as an inheritance graph in Figure 3.2.

bot sub [sign, syn, syn_term, sem, args, list].

sign sub [phrase].

phrase sub [word] intro [syn:syn, sem:sem, args:args, str:list].

word sub [].

syn sub [] intro [cat:syn_term].

syn_term sub [...].

...

sem sub [const, funct].

const sub [...].

...

funct sub [atomic, quant].

atomic sub[arg_1] intro [pred:sem].

arg_1 sub [arg_2] intro [arg1:sem].

arg_2 sub [arg_3] intro [arg2:sem].

arg_3 sub [] intro [arg3:sem].

quant sub [l_bind] intro [var:sem].

l_bind sub [] intro [rest:sem].

args sub [] intro [larg:list].

list sub [ne_list, e_list].

ne_list sub [] intro [hd:bot, tl:list].

e_list sub [].

Figure 3.1: Minimum required type hierarchy in ALE notation.

Pursuant to ALE's convention, bot serves the root of the type hierarchy. Each type has a (possibly
empty) set of subtypes listed after the sub keyword following the type name. Furthermore, each type may
introduce a list of features which appear after the intro keyword, while each feature is followed by an
appropriate type.

The type hierarchy shown has provisions for up to three arguments per predicate (argi), though it can
easily be extended to incorporate more, should this become necessary for some particularly sophisticated
grammar. The list part of the type hierarchy allows for encoding lists and other ordered sequences used
in args and str features.

The ellipsis (. . .) denotes values not stipulated by the minimum required type hierarchy, since inversion
and generation do not assume anything about them. For example, speci�c syntactic categories (values of the
cat feature) may vary in actual grammars, and therefore are not shown. On the other hand, the inversion
algorithm assumes that constituents of input grammar rules have the feature syn, whose values in turn has
the feature cat. Hence both features are required in the type hierarchy, while the particular values of the
latter are not.

18

syn
[cat:syn_term]

args
[larg:list]

atomic
[pred:sem]

quant
[var:sem]

phrase
[syn:syn,
 sem:sem,
 args:args,
 str:list]

arg_3
[arg3:sem]

arg_1
[arg1:sem]

l_quant
[rest:sem]

arg_2
[arg2:sem]

[hd:bot,
 tl:list]

ne_list

sign syn_term

const

sem

funct

bot

e_list

list

word

F
ig
u
re

3
.2
:
M
in
im
u
m

req
u
ired

ty
p
e
h
iera

rch
y
d
ep
icted

a
s
a
g
ra
p
h
.

1
9

Currently, the name of the designated feature (rest) as well as other distinguished features and types
(e.g., syn, sem, pred) are \hard-coded" into the type hierarchy. This way the compiler and the interpreter
assume such features and types to be associated with known names. Should the need arise, these symbols
can be turned into parametric, to be explicitly supplied with the input grammar.

3.2.4 Encoding examples

This section shows several examples of encoding linguistic information in our formalism.
Some of the feature structures in the examples below contain the str feature. To lessen the burden on

the reader, the setting of this feature is explained later (see Section 3.4.6), and in the meanwhile the feature
is shown only for the sake of completeness.

1. The following feature structure represents a lexical entry of the word \smokes", having the meaning
�x:smoke(x) :

fs
e
1 =

2
6666666664

word

syn :

h
syn

cat :

�
vi

�i

sem :

2
664

�-bind

var : 5
�
sem

�
rest : 1

""
arg 1

pred :

�
smoke

�
arg1 : 5

##
3
775

str :

D
1
E

3
7777777775

The semantic constant [smoke] serves here as a predicate and the value of the feature arg1 as its
argument. The (nested) FS enclosed in double brackets is the semantic core, residing inside an envelope
of a �-abstraction. The feature rest is the designated one, and the designated path in this case is
< fse1 sem rest >.

2. Now compare the previous example with an AVM for the expression smoke(john) (which encodes the
meaning of the sentence \John smokes"):

fs
e
2 =

2
6666664

phrase

syn :

h
syn

cat :

�
s

�i
sem : 1

""
arg 1

pred :

�
smoke

�
arg1 : 5

�
john

�
##

str :

D
5 ; 1

E

3
7777775

Here there is no designated path as the entire sem value consists solely of the semantic core. The
constant (actually, 0-ary predicate) [john] is the argument of the predicate [smoke]. To produce the
phrase encoded by fse2 it is necessary to search the lexicon for words whose meanings are 5 and 1

respectively, and then to concatenate the resultant words in this order.

3. Next we consider the usage of connectives (cf. Section 3.2.2). Following below is a Connective Registry
entry for the mod connective, which modi�es an unsaturated predicate (having at least one �-binder
over it) with another meaning primitive. Note that the syn feature is de�ned to be as general as possible
(merely for the sake of total well-typedness), since purely semantic connectives have no syntax.

20

2
666666664

phrase

syn :

h
syn

cat :

�
syn term

�i

sem :

2
66664

�-bind

var :

�
sem

�
rest :

2
64
2
64

arg 2

pred :

�
mod

�
arg1 : 6

�
funct

�
arg2 : 7

�
sem

�
3
75
3
75

3
77775

3
777777775

Our next example uses the above connective to modify9 the verb \smokes" with the adverb \today".
According to rule O3 of the running example grammar (see Section 3.3 below), this results in a phrase
\smokes today". If the meaning of the verb is �x:smoke(x) and that of the adverb is today, the meaning
of the combined phrase is �x:mod(smoke(x), today).

fs
e
3 =

2
666666666666664

phrase

syn :

h
syn

cat :

�
vp

�i

sem :

2
66666664

�-bind

var : 5
�
sem

�

rest :

2
66664

2
66664

arg 2

pred :

�
mod

�
arg1 : 6

"
arg 1

pred :

�
smoke

�
arg1 : 5

#

arg2 : 7
�
today

�

3
77775

3
77775

3
77777775

str :

D
6 ; 7

E

3
777777777777775

4. The following two examples show feature structures created using the grammar of Appendix B.

We demonstrate here how a phrase \good man" is obtained from the words \good" and \man", and how
the meaning of the phrase is constructed in the process. Montague semantics for \man" is �x:man(x),
i.e. man is a �rst-order predicate. Prenominal adjectives are viewed by Montague approach as second-
order functions, i.e., expressions which can be attached to a noun to form another noun. Thus, the
compositionality principle requires the combined expression good(man) to be a �rst-order predicate as
well, similarly to man. This fact should obviously be re
ected by the semantics of the phrase \good
man".

Therefore, the meaning of \good man" should be �x: (good(man)) (x), where the meaning of \good"
is applied to that of \man", and their combined meaning is applied to x, stating the fact that x is a
\good man". In the light of the above, the phrase \good man" is composed of words good and man
using the rule T17 = (Adj CN) CN10) (see Appendix B).

Observe, that argi pointers of semantic forms only re
ect the predicate-argument structure, mirroring
the way semantic forms are built from predicates (e.g., good) and arguments (e.g., man). In addition to
that, it should be speci�ed that x is a parameter of the complex expression �x: (good(man)) (x). Since
man is the only argument of good, x cannot be made an additional argument. Otherwise, good would
have two arguments and would become di�erent in usage with man, which has only one argument (x).

To overcome this apparent problem, the sample grammar introduces an additional feature parami,
which is employed to denote parameters of complex expressions. It should be emphasized that this

9We adopted themod connective from (Samuelsson, 1995), so that there is a non-chain rule in the running example grammar
(in addition to lexicon entries, which are trivially non-chain). Thus, verb modi�cation is de�ned using the mod connective for
expository purposes only, and does not re
ect the accepted linguistic analysis. The Montague sample grammar (Appendix B)
de�nes verb modi�cation in the conventional way, by representing adverbs as second-order predicates which operate on verbs
(�rst-order predicates).

10Here CN stands for common noun.

21

feature is neither assumed nor required by the inversion and generation algorithms. It is simply an
ordinary feature used at the discretion of the grammar designer.

Now, a FS representing �x: (good(man)) (x) has a feature param1 pointing to x, in addition to the
feature arg1 pointing to man. To ensure uniformity of representation, a FS for man(x) should also have
two such features. Namely, arg1 points to x denoting that the predicate man is applied to the argument
x, while param1 also points to x (actually, param1 is reentrant with arg1) to denote that x is the
parameter of the expression �x:man(x).

Here is the feature structure representing the phrase \good man":

fs
e
4 =

2
66666666666666664

phrase

syn :

h
syn

cat :

�
cn

�i

sem :

2
6666666664

�-bind

var : 2
�
sem

�

rest :

2
6666664

2
6666664

atomic 1 1

pred : 1
�
good

�
arg1 : 7

2
64

atomic 1 1

pred :

�
man

�
arg1 : 2

param1 : 2

3
75

param1 : 2

3
7777775

3
7777775

3
7777777775

str :

D
1 ; 7

E

3
77777777777777775

where cn stands for \common noun".

The purpose of arg1 and param1 pointers in the semantic core is as follows. The composite ex-
pression (good(man)) (x) was obtained by applying the meaning of good to that of man, hence
< fse4 sem rest arg1 > points to the latter. On the other hand, x is the parameter of the entire
expression �x: (good(man)) (x), therefore < fse4 sem rest param1 > = x). The param1 feature in this
case denotes that the combined meaning of good(man) is applied to x; speci�cally, it is not the case
that the meaning of good is applied to the combined meaning of man(x)).

We can also analyze the resulting expression as follows. The adjective \good" is a predicate-modi�er
(second-order function), and its Montague type is ((e; t); (e; t)). When it is combined with the common
noun \man" of type (e; t) (observe that the noun is substituted for the value of arg1), the outcome is
a �rst-order predicate \good man" of type (e; t). The param1 feature points to the parameter x (of
type e) of the result.

5. The last example encodes the meaning 8x(man(x)! smoke(x)) of the sentence \Every man smokes":

fs
e
5 =

2
6666666666666666666666664

phrase

syn :

h
syn

cat :

�
s

�i

sem : 6

2
666666666666666664

2
666666666666666664

arg 2

pred :

2
6666666666664

8-quant

var : 2
�
sem

�

scope :

2
6666666664

if

wff1 : 3

2
64

atomic 1 1

pred :

�
man

�
arg1 : 2

param1 : 2

3
75

wff2 : 7

2
64

atomic 1 1

pred :

�
smoke

�
arg1 : 2

param1 : 2

3
75

3
7777777775

3
7777777777775

arg1 : 3

arg2 : 7

3
777777777777777775

3
777777777777777775

str :

D
6 ; 3 ; 7

E

3
7777777777777777777777775

22

where w� stands for \well-formed formula".

The logical form of this example consists of three integral parts, namely, the (schematic) predicate
8x(P (x) ! Q(x)), and two arguments { man(x) and smoke(x). The latter two reside deep inside the
FS representing the predicate, but are pointed at by the pointers arg1 and arg2 from the top predicate
level. The expressions man(x) and smoke(x) in turn are also given in predicate-argument structure,
whose sole argument is the universally quanti�ed variable x. For the reasons explained in the previous
example, both expressions have the param1 feature pointing to their parameter (x).

The three constituent parts of the above logical form correspond to lexicon entries of the gram-
mar, namely, to the entries for the words \every", \man", \smoke". The meaning of \every" is
�P:�Q:8x(P (x) ! Q(x)), and during derivation P and Q are instantiated to the actual meaning
predicates. The meanings of the other two words are �x:man(x) and �x:smoke(x), respectively.

Parsing the sentence \Every man smokes" proceeds as follows. First, the lexicon entries for the words
\every", \man", \smoke" are retrieved. Rule T30 = (Det N) NP) is then invoked, to apply the
meaning of the determiner (\every") to that of the noun (\man"). A �-reduction built into the rule is
performed, and P gets instantiated to man. The resulting expression �Q:8x(man(x)! Q(x)) gives the
semantics of NP ; it lacks a verb predicate to become a meaning of a complete sentence. Finally, rule
T2 = (NP V P) S) applies the semantics of NP to that of the verb. Consequently, Q is instantiated
to smoke, and the resultant feature structure is fse5 shown above.

The str feature of fse5 traces the word order of the original sentence. As explained above (Section 3.2.2),
the str feature encodes series of semantics primitives, which originate in the semantics of lexicon entries.
Therefore, < fse5 str > lists three FSs, each corresponding to the semantic core of one of the lexicon
entries involved.

3.3 The sample grammar

To visualize the steps of the inversion algorithm we apply it to a sample grammar Ge
O . Our running example

is basically a small subset11 of the grammar used in (Samuelsson, 1995), but represented in a TFS-based
formalism. Appendix A lists the entire ALE-style (Carpenter, 1992a) speci�cation of the grammar. This
section comments on various design considerations in encoding the grammar with feature structures, and
depicts MRSs for the grammar rules and lexicon items.

3.3.1 Sample grammar type hierarchy

The type hierarchy of the sample grammar is built around the minimum required type hierarchy shown
in Section 3.2.3. Since all the auxiliary features and types required by the inversion algorithm are already
included (e.g., the str feature necessary for tracing NL word order, and the args feature whose values hold lists
of arguments passed between logical forms), the type hierarchy remains invariant throughout all grammar
transformations (normalized and inverted).

3.3.2 Sample original grammar de�nition

The normalization procedure sets the str feature of Ge
O rules to record the original phrase structure. For

expository purposes this setting is already incorporated in Ge
O rules shown below. The motivation and the

exact way this setting is performed are described later, in Section 3.4.6.

Initial symbol

The initial symbol is only supplied here for explanatory purposes, to demonstrate derivations; there is no
such notion in the formalism.

11We nevertheless keep the original rule numbers to make the reading easier for those familiar with (Samuelsson, 1995).

23

2
4 phrase

syn :

h
syn

cat :

�
s

�i
sem :

�
sem

�
3
5

Grammar rules

O2 This rule applies the semantics of VP to that of NP. �-reduction built into the rule MRS is performed,
and the result becomes the semantics of S.

2
664

phrase

syn :

h
syn

cat :

�
np

�i
sem : 5

�
sem

�
str : 3

�
list

�
3
775

2
666664

phrase

syn :

h
syn

cat :

�
vp

�i
sem :

"
�-bind

var : 5

rest : 6
�
funct

�
#

str : 4
�
list

�

3
777775 =)

2
664

phrase

syn :

h
syn

cat :

�
s

�i
sem : 6

str : < 3 ; 4 >

3
775

O3 This rule modi�es the semantics of VP with that of an adverb (AdvP). The mod connective combines
the former with the latter, to form the semantics of the rule head.

2
666664

phrase

syn :

h
syn

cat :

�
vp

�i
sem :

"
�-bind

var : 5
�
sem

�
rest : 6

�
funct

�
#

str : 3
�
list

�

3
777775

2
664

phrase

syn :

h
syn

cat :

�
advp

�i
sem : 7

�
sem

�
str : 4

�
list

�

3
775 =)

2
66666666664

phrase

syn :

h
syn

cat :

�
vp

�i

sem :

2
66664

�-bind

var : 5

rest :

2
64

arg 2

pred :

�
mod

�
arg1 : 6

arg2 : 7

3
75

3
77775

str : < 3 ; 4 >

3
77777777775

Lexicon

Although true for Ge
O , in general case there need not be a one-to-one correspondence between strings (words)

and semantic primitives, for example in case of common lexical ambiguity.

O8 The proper noun \John".

\John" �!

2
664

phrase

syn :

h
syn

cat :

�
np

�i
sem : 1

��
john

��
str : < 1 >

3
775

O11 The intransitive verb \smokes".

\smokes" �!

2
666666664

phrase

syn :

h
syn

cat :

�
vi

�i

sem :

2
664

�-bind

var : 5
�
sem

�
rest : 1

""
arg 1

pred :

�
smoke

�
arg1 : 5

##
3
775

str : < 1 >

3
777777775

24

O14 The adverb \today".

\today" �!

2
664

phrase

syn :

h
syn

cat :

�
advp

�i
sem : 1

��
today

��
str : < 1 >

3
775

Connective Registry

� The mod connective.

2
6666666664

phrase

syn :

�
syn

�

sem :

2
66664

�-bind

var :

�
sem

�
rest :

2
64
2
64

arg 2

pred :

�
mod

�
arg1 :

�
funct

�
arg2 :

�
sem

�
3
75
3
75

3
77775

str :

�
list

�

3
7777777775

3.3.3 Sample derivation with the original grammar

We exemplify below derivation of the sentence \John smokes today" with Ge
O .

In what follows we use the derivation relation as de�ned in (Wintner, 1997). All the feature structures
along the derivation are as speci�c as needed. There may be reentrancy among FSs within any individual
sentential form (denoted by usage of identical tags), but there is absolutely no reentrancy among FSs of
di�erent sentential forms. 2

66666666664

phrase

syn :

h
syn

cat :

�
s

�i

sem :

2
66664

arg 2

pred :

�
mod

�
arg1 : 6

"
arg 1

pred :

�
smoke

�
arg1 : 5

�
john

�
#

arg2 : 7
�
today

�

3
77775

str : < 5 ; 6 ; 7 >

3
77777777775

(O2)
�!

2
664

phrase

syn :

h
syn

cat :

�
np

�i
sem : 51

�
john

�
str : < 51 >

3
775

2
66666666666664

phrase

syn :

h
syn

cat :

�
vp

�i

sem :

2
66666664

�-bind

var : 51

rest :

2
66664

arg 2

pred :

�
mod

�
arg1 : 61

"
arg 1

pred :

�
smoke

�
arg1 : 51

#

arg2 : 71
�
today

�

3
77775

3
77777775

str : < 61 ; 71 >

3
77777777777775

(O3)
�!

25

2
664

phrase

syn :

h
syn

cat :

�
np

�i
sem : 52

�
john

�
str : < 52 >

3
775

2
666666664

phrase

syn :

h
syn

cat :

�
vp

�i

sem :

2
664

�-bind

var : 52

rest : 62

"
arg 1

pred :

�
smoke

�
arg1 : 52

#
3
775

str : < 62 >

3
777777775

2
664

phrase

syn :

h
syn

cat :

�
advp

�i
sem : 72

�
today

�
str : < 72 >

3
775 (lex)

�!

\John smokes today"

3.4 Grammar normalization

Normalization is an auxiliary step towards inversion, which restructures the surface shape of grammar rules
to match the predicate-argument structure of logical forms. Before GO can be normalized, its rules have to
be partitioned into chain and non-chain ones, as the two groups are treated di�erently by the normalization
procedure.

3.4.1 Motivation

Since the inverted grammar is to be ultimately used for generation, let us consider the generation procedure
in a nutshell.

The generation algorithm operates similarly to the SHDG procedure devised by Shieber et al. (1990).
Non-chain rules serve as nodes in the generation tree12, and get connected to other nodes by series of (zero
or more) chain rules. The idea is to collect the arguments introduced by the chain rules, and to route them
to their respective predicates. Whenever a non-chain rule terminates a sequence of chain rules, its body
elements match the arguments collected along this sequence. It is this mechanism that allows recursive
processing of logical forms during generation: application of a non-chain rule corresponds to consuming the
predicate, then its arguments \rise" to the surface and are realized in the body elements. Each such element
is then connected to lower nodes via series of chain rules etc.

In the general case, not all the arguments collected in the head of a non-chain rule are matched by the
body elements. Let B1B2 : : : Bl) H be a non-chain rule, such that the semantics of H is of the form
< H sem >= P (< B1 sem >; : : : ; < Bl sem >), where P is a predicate. The argument list < H args >
may contain more than l elements | some of them are to be matched against the constituents of the rule
body, while others are to be passed further downwards. Each element of < H args > whose semantics serves
an argument of P is matched with the corresponding body constituent. The remaining elements of the
< H args > list need to be passed further downward to their respective predicates. Thus, non-chain rules
may either \consume" (match) arguments accumulated in the head, or pass them further on. Speci�cally,
non-chain rules never introduce any new arguments of their own.

3.4.2 Grammar normal form

The generation algorithm outlined above induces the inversion procedure, which transforms the grammar
into a form suitable for generation. For the inversion algorithm to work correctly, the input grammar has to
be brought to a so-called \normal form", which facilitates the above scenario of rule invocation. To this end,
chain rules are transformed into unit rules: the semantic head is left as the only body constituent, while all
the rest are moved to its argument list. This allows to concatenate the resultant unit rules into chains, which
collect the arguments for the non-chain rules to consume. The arguments passed to the non-chain rules are

12Like a parsing tree, the generation tree is a convenient way to graphically illustrate generation process; it is built by
depicting the rules applied to the form being generated from.

26

consumed by matching them with the rule body constituents. To simplify the matching, bodies of non-chain
rule are rearranged, so that the order of constituents mirror the argument order in the head semantics.
Upon this transformation the role of each constituent is de�ned by its position. Then each constituent can
be straightforwardly matched with its counterpart from the head argument list, since both correspond to the
same argument of the head logical form. Lexicon entries of GO can be viewed as non-chain rules (since they
have no body constituents whose semantics is reentrant with that of the head), and are therefore normalized
along with other non-chain rules.

3.4.3 Normalization of GO

In what follows we describe normalization of di�erent kinds of GO rules. In order not to in
ate GN un-
necessarily, whenever a new normalized rule is about to be created, it is compared with the existing ones.
For each such candidate rule, the algorithm checks whether a more general rule (from the uni�cation point
of view) has already been created. If so, the new rule is discarded, otherwise it either replaces the existing
rule (if the latter is more speci�c) or is added as a new one (if it is neither subsumed by nor subsumes any
existing rule). This functionality is realized in the normalization algorithm below by an auxiliary procedure
add rule. Since this routine is used by the inversion algorithm as well, it receives the grammar as an explicit
parameter, in addition to the rule to be checked.

Normalization of chain rules

According to the usual de�nition (e.g., (Shieber et al., 1990, p.34)), a rule is a chain rule if the logical form
of its head is reentrant with that of one of the body elements, called the semantic head13. To facilitate
further explanation let B1B2 : : : Bm) H be a generic chain rule, where < H sem > is reentrant with
< Bk sem > such that 1 � k � m, and hence Bk is the semantic head. Let us consider the predicate-
argument structure of < H sem >. According to the de�nition of semantic head, < Bk sem > serves
the predicate which acts on the semantics of the rest of body constituents as arguments: < H sem > =
< Bk sem > (< B1 sem >; : : : ; < Bk�1 sem >;< Bk+1 sem >; : : : ; < Bm sem >). The normalization
changes the surface form of the rule accordingly, to match the nested structure of < H sem >. Chain rules
are modi�ed to only leave the semantic head as a single constituent in the body, while the rest of the body
elements are added to the list14 of its arguments. Thus, chain rules are restructured to have a single FS in
the body, so that the inversion phase may combine the resultant unit rules (called Argument-Filling rules)
into longer chains.

Normalization of non-chain rules

Non-chain rules are also modi�ed for argument handling. To enable correct argument
ow, the normalization
algorithm needs to determine for each rule the body constituent that receives any \excessive" arguments
passed from the head. We call such a constituent the argument carrier15. The argument carrier is deter-
mined manually16, to ensure17 that the arguments are eventually passed to their respective predicates. The
normalized versions of non-chain rules are called Functor-Introducing rules, since they \introduce" functors
(cf. predicate P in the above example) which consume arguments collected along the chains of AF rules.
The latter \�ll" the functors with their arguments, hence the name of Argument-Filling rules.

Further modi�cations to non-chain rules include restructuring their body to match the argument order in
the head. That is, the new rule body is Bi1 : : : Bil , where Bij is reentrant with j-th argument of < H sem >.
This is performed to establish the order in which the arguments of the head are matched in the body

13Here we rely on the assumption made in Section 3.1 that chain rules may have no more than one semantic head.
14Actually, the arguments added by the chain rule are pushed onto the argument stack of the semantic head.
15We currently assume that there may be only one argument carrier in each non-chain rule. This assumption is essentially

equivalent to the analogous assumption that chain rules may have only one semantic head.
16Each non-chain rule in the input grammar is accompanied by a marker that indicates the argument carrier for this rule.

These markers are implemented as comments of ale speci�cation language, and are therefore transparent to other applications
that may use the same grammar.

17In Section 3.5.1 we explain why it is important to correctly determine the argument carrier.

27

elements. Also, a new body constituent is created after Bil , which is reenrant with the entire < H sem >;
we denote this last body element as [H] and call it the semantics constituent. Thus the normalized FI rule
is Bi1 : : : Bik (A) : : : Bil [H]) H(A), where A is a generic argument list and Bik is the argument carrier.

To understand the motivation for this transformation, consider bottom-up generation from a logical
form f = P (a1; : : : ; al). As mentioned above, our generation algorithm is chart-based. Therefore, rules are
applied during generation using the chart operations of dot movement and completion (see Section 4.1). In
particular, the former operation matches the body of the rule against the contents of the chart, and the
latter creates a new chart item representing the rule head if the rule application is successful.

The generator
attens18 the given logical form f and produces a sequence of items s = [a1; : : : ; al; P].
These items are then used to initialize the chart. Recall that inverted rules are made from chains of AF
rules terminated with a FI one, thus the body of an inverted rule is due to some Functor-Introducing rule
in GN . To apply such a rule using dot movement, it is necessary to match its body constituents against the
elements of s. This is when the apparently strange restructuring of non-chain rules begins to work. Since
both the reordered rule body and the generation input (the sequence s of meaning components) have exactly
the same order, they can be matched in a straightforward manner. The last body constituent is necessary to
match the last element of s, namely the predicate itself. This constituent allows for propagation of predicate
semantic forms through inverted grammar rules, since the semantics of the predicate is shared by all the AF
rules along the chain.

To enable proper treatment of arguments as described above, the feature args is employed. Its values (of
type args) have the only feature { larg { which holds a list of arguments.

We shall presently outline the normalization of lexicon entries, but �rst we consider an example empha-
sizing the above principles.

A normalization example

Let us consider an example of normalization. We use parenthesized notation to abbreviate feature structures
enclosed as arguments. For instance, rule O2 = NP V P) S of Ge

O is normalized to the Argument-Filling
rule N2 = V P (NP)) S. The meaning of the resultant rule is that the FS representing the VP has a
one-element argument list, which contains a FS representing the NP. Similarly, a mere (NP) would mean
a FS for an NP wrapped in an envelope of type args. Rule O3 = V P AdvP) V P induces the Functor-
Introducing rule N3 = V P (A) AdvP [V P]) V P (A). Three additional FI rules are created from the lexicon:
N8 = A [NP]) NP (A), N11 = A [V P]) V P (A) and N14 = A [AdvP]) AdvP (A).

Derivation of the sentence \John smokes today" from a FS with the logical form f = mod(smoke(john),

today) may pursue the following scenario. Using rule N2, the initial symbol S with semantics f goes to
V P (NP). Rule N3 is then applied to create V P (NP) AdvP [mod]; observe19 how the NP argument is
routed to the VP constituent of the N3 body, which acts as an argument carrier. Rule N11 is invoked on
the resultant sentential form to consume the VP predicate, thus leaving (NP) [smoke] AdvP [mod]. An
auxiliary rearrangement rule R2 (see the de�nition in Section 3.4.5 below) extracts the NP from its envelope
of type args and leaves NP [smoke] AdvP [mod]. At last, the remaining FSs for NP and AdvP are
exhausted by rules N8 and N14, resulting in the sentential form [john] [smoke] [today] [mod]. Observe
that derivation with GN terminates with a sequence of meaning primitives, which together comprise the
input logical form.

Normalization of the lexicon

Lexicon entries can be viewed as non-chain rules with an empty body, and their semantics is treated as a
(possibly 0-ary) functor with arguments to be �lled. Thus, lexicon items induce a set of additional Functor-
Introducing rules, also called Lexicon-Derived (LD) rules. If \word"! H is a lexicon entry, the corresponding
FI rule is of the form A [H]) H(A) so that < H args > is reentrant with A. That is, the entire argument

18Flattening of logical forms is performed in postorder, placing �rst the arguments, then the predicate.
19Although not obvious here due to the briefness of notation, rule N3 also consumes the mod predicate { see Section 3.4.9

for a full derivation example on feature structures.

28

list A collected in the head forms the body of the new rule. The body of Lexicon-Derived rules is a single
feature structure of type args encoding a list of arguments; it is
attened to actually form a list of elements
using rearrangement rules (see Section 3.4.5 below). Thus, Lexicon-Derived rules constitute the \ultimate"
destination of arguments accumulated along the chains, as they can be passed no further.

In order to minimize the number of Lexicon-Derived rules and reduce the number of speci�c semantic
forms present in such rules, the lexicon is normalized in a slightly more sophisticated way than that just de-
scribed above. The normalization procedure analyzes lexicon entries by abstracting over particular semantic
constants. If the semantic core of a given lexical item is either scalar or is a predicate-argument construct
whose predicate is scalar, that scalar constant is replaced by the lowermost (non-terminal) supertype from
the type hierarchy. The outcome becomes a candidate for a new FI rule. The idea here is to produce one
rule to treat all nouns, another to treat all intransitive verbs, etc. This allows to greatly reduce the number
of lexicon-derived Functor-Introducing rules, compared with the straightforward normalization20 outlined in
(Samuelsson, 1995).

For instance, consider the lexicon entry O8. To form a new rule, the semantic constant john in O8

is replaced with its supertype pn (which stands for \proper noun"). In item O11, the type v intrans is
substituted for the semantic predicate smoke, and the normalized rule N11 is then created.

In addition to initiating a set of lexicon-derived rules (as described above), the lexicon of the original
grammar also stays in both GN and GI , to supply the information about association of NL words and their
semantic meanings.

3.4.4 Observations

We now further explain and re�ne some of the normalization steps. Let us review normalization of chain
rules into Argument-Filling rules. As described in Section 3.2, feature structures in the rules of GO have
the feature cat, which denotes categories of the context-free backbone of the grammar. When multiple body
constituents become arguments of the semantic head and are pushed onto its argument stack, the body of
the normalized AF rule is a feature structure having several cat values (at various depths and via di�erent
paths). For example, observe rule N2 below, where the NP became an argument of the VP. The single body
element contains two cat values, one for each original constituent: < B1 args larg hd syn cat >= np and
< B1 syn cat >= vp, where B1 denotes the feature structure in the rule body.

The initial symbol persists unchanged through all grammar transformations.

3.4.5 Rearrangement rules

The grammarGN is endowed with a set of GO-independent auxiliary rearrangement rules, which are required
for proper argument processing in derivations under GN . These rules
atten argument lists as described
below.

R1 This rule serves to extract information from inside an \envelope" of type args; it treats argument lists
of length more than 1.

2
4 args

larg : 1

"
ne list

hd :

�
phrase

�
tl :

�
list

�
#35 2

�
phrase

�
=)

2
4 args

larg :

"
ne list

hd : 2

tl : 1

#35

R2 This is the terminal case of information extraction from an args envelope. This rule treats lists of length
1, i.e., those having only a non-empty head and an empty tail.

20In his article, Samuelsson (1995) brie
y mentions that a similar approach for lexicon processing is possible for his LR
grammar compilation for generation. Since we work in a uni�cation-based formalism, using the type hierarchy information to
make grammar rules as general as possible is a natural thing to do.

29

1
�
phrase

�
=)

2
4 args

larg :

"
ne list

hd : 1

tl :

�
e list

�
#35

R3 This rule discards empty argument envelopes.

� =)

h
args

larg :

�
e list

�i

where � is the empty feature structure.

3.4.6 Grammar preprocessing

The str feature

An additional transformation performed by the normalization algorithm involves setting the str feature,
which serves for recording the original phrase structure of the GO rules. This is performed as a preprocessing
step, since the normalization changes the surface order of rule constituents.

The intuition for str usage is that tracing its values ultimately enables us to recreate strings spanned by
various logical forms. The feature is used di�erently for regular rules and lexical items: in grammar rules it
relates to a substring a particular FS eventually derives, while in lexical items such substrings are available
immediately. The str values of various FSs may be concatenated on various stages of grammar processing,
and thus they are of type list. In order to do without an append operation, the str values are represented
as tree-like structures. Thus, to concatenate s1 and s2, a new list element s is created of type ne list, so
that < s hd >= s1 and < s tl >= s2: h

ne list
hd : s1
tl : s2

i

where in the general case s1 and s2 are tree-like graphs whose edges are labeled with features hd and tl.
Branches of such trees are terminated with an [e list] construct. For instance, a feature structure encoding
a one-element list is depicted below: �

ne list
hd : s3

tl :

�
e list

��

This structure enables
attening trees into linear lists by recursively
attening the elements of s1 and
then the elements of s2. To keep the feature structures in this document compact, we abbreviate the tree-like
structures with their
attened forms (though actual FSs encode the str values as trees, as explained above).
For instance, < s11; : : : ; s

m
1 ; s

1
2; : : : ; s

n
2 > might encode the elements of s1 concatenated with those of s2.

Whenever we want to outline the true structure of an str value, we use the notation << s11; : : : ; s
m
1 >;<

s12; : : : ; s
n
2 >> to emphasize which elements actually belong to s1 and which to s2.

� In grammar rules the str feature of each body constituent is marked with a tag (e.g., 3 , 4 etc.).
The str value of the rule's head is then set to the concatenation of body's tagged values, in the order
in which their respective constituents appear in the rule's body. In other words, the purpose of the
str feature in the head of grammar rules is to store the surface linear order of the body constituents.
For example, in rule O2 of the running example grammar (see Section 3.3), the value of the head str
feature is < 3 ; 4 >, which is a concatenation of the value 3 of the left body element and 4 of the
right body element. The str feature becomes crucial in GN and GI . For instance, normalization of
rules may change their structure so that some body constituents become hidden inside the semantic
head. Thus, the surface representation of the body changes, while its original form is still stored in
the head str value. For illustration, consider the rules of Ge

N in Section 3.4.8.

30

� In lexical items the head of the str list points to the core of the semantics expression (which resides
at the end of the designated path starting at the topmost level). This makes logical forms be the
primitive elements of str lists. Given such a list, logical forms may be mapped onto words, resulting
in the string derived/generated.

3.4.7 Normalization algorithm

In what follows we describe transformations applied to each type of GO rules. During the conversion process
each normalized rule is marked as an AF or FI one, for the inversion phase.

0. Auxiliary definitions

/* Procedure add rule receives a grammar G and a \candidate" rule r, and checks whether G already
contains a rule more general than r. If so, the \candidate" rule r is discarded, otherwise it either
replaces the existing rule (if the latter is more speci�c) or is added as a new one (if it is neither
subsumed by nor subsumes any existing rule). */

procedure add rule(G, r)

(a) If 9r0 2 G : r0 t r 6= > then

i. If r v r0 then replace r0 with r: G = (G n fr0g) [frg

ii. If r0 v r then discard r.

(b) Otherwise, add r to G: G = G [frg.

end /* procedure add rule */

1. Preprocessing step

For every r = B1 : : : Bm) H in GO:

(a) Set < H str >=< B1 str > � < B2 str > � : : : � < Bm str >,
where � denotes concatenation.

Comment: Record the original phrase structure.

(b) If 9k; 1 � k � m such that reentrant(< H sem rest� >;< Bk sem rest� >),
mark r as chain, otherwise mark r as non-chain. In case of a chain rule, mark Bk as the semantic
head of r.

Comments:

� According to the de�nition of chain rule in Section 3.1, no more than one such k as above
exists in each rule.

� This induces a partition on GO :
GOchain

[GOnonchain
= GO (obviously, Gochain \GOnonchain

= ;).

(c) GN := ;

2. Normalization of non-chain rules.

For every r in GOnonchain
:

(a) Let SC =< H sem rest� > be the semantic core of H.
Then rN = Bi1 : : : Bil(A) : : : Bim [H]) H(A),
where [H] =< H sem > (the semantics constituent);
8k; 1 � k � m : reentrant(< Bik sem rest� >;< SC argk >);
Bil is the manually designated argument carrier, therefore set < Bil args larg > =
< H args larg > (the generic argument list A =< H args larg > denotes this reentrancy)
and 8j; 1 � j � m; j 6= l :< Bij args larg >= [e list].

Comment: Restructure the rule body to match the head argument order.

31

(b) Mark rN as Functor-Introducing and attempt to add it to the grammar:
add rule(GN ; rN).

3. Normalization of chain rules.

For every r in GOchain
:

(a) Let Bk be the semantic head: reentrant(< H sem rest� >;< Bk sem rest� >).

� If m = 1, then let rN = r and set < B1 args >=< H args >.

� Otherwise, rN = Bk(B1; : : : ; Bk�1; Bk+1; : : : ; Bm; A)) H(A),
where < Bk args larg hd >= B1 and
< Bk args larg tl >= (B2 � : : : � Bk�1 �Bk+1 � : : : �Bm �A)
(A =< H args larg > denotes a generic argument list and � denotes concatenation).
8j; 1 � j � m; j 6= k : set < Bj args larg >= [e list].

Comment: Convert the body elements into arguments of the semantic head.

(b) Mark rN as Argument-Filling and attempt to add it to the grammar:
add rule(GN ; rN).

4. Normalization of lexicon entries.

For every lexicon entry l = (\word"! H):

(a) Let rN = A [H 0]) H 0,
where A =< H 0 args > is a generic argument list,
[H 0] =< H 0 sem > (the semantics constituent, created as in the case of FI rules),
and H 0 is created from H as follows:

� If the semantic core of H is either scalar or is a predicate-argument structure whose pred
value is scalar, this scalar constant is replaced with its lowermost (non-terminal) supertype
from the type hierarchy.

� Otherwise, H 0 = H .

Comment: Create only \representative" Lexicon-Derived rules, which correspond to several se-
mantic primitives.

(b) Set < H 0 str >=< H 0 sem rest� >.

Comment: The str feature value in the head of a Lexicon-Derived rule is associated with the
semantic core of the head.

(c) Mark rN as Functor-Introducing and attempt to add it to the grammar:
add rule(GN ; rN).

5. GN = GN [fR1; R2; R3g

Comment: Add the rearrangement rules to GN .

The algorithm ends up with a normalized grammar GN , which consists of three pairwise disjoint sets of
rules GN = GFI [GAF [GR, where GFI is a set of Functor-Introducing rules, GAF is a set of Argument-
Filling rules and GR is a set of auxiliary rearrangement rules.

According to the normalization algorithm, each rule rN 2 GN nGR corresponds to a rule (or a lexicon
item) r 2 GO that licensed its creation. In such a case, r is referred to as the prototype of rN , and rN is
the image of r.

3.4.8 Normalized sample grammar

The normalized grammar of the running example looks as follows. The numbering of Ge
N rules corresponds

to that of their prototypes in Ge
O . Whenever appropriate, Ge

N rules are accompanied with a comment on
how they have been obtained from the corresponding original rules.

32

Initial symbol

Exactly the same as in Ge
O .

Functor-Introducing rules

N3 The semantics of the rule head is not reentrant with that of any body constituent, hence the prototype
rule is a non-chain one. An additional body constituent (the so-called semantics constituent) is created
in the last position, which is made reentrant with the head semantics. The �rst body constituent is
the manually designated argument carrier, therefore < B1 args larg >=< H args larg >.

2
6666666664

phrase

syn :

h
syn

cat :

�
vp

�i
sem :

"
�-bind

var : 5
�
sem

�
rest : 6

�
funct

�
#

str : 3
�
list

�
args :

h
args

larg : 9
�
list

�i

3
7777777775

2
666664

phrase

syn :

h
syn

cat :

�
advp

�i
sem : 7

�
sem

�
str : 4

�
list

�
args :

h
args

larg :

�
e list

�i

3
777775 17

2
66664

�-bind

var : 5

rest :

2
64

arg 2

pred :

�
mod

�
arg1 : 6

arg2 : 7

3
75

3
77775 =)

2
666664

phrase

syn :

h
syn

cat :

�
vp

�i
sem : 17

str : << 3 >;< 4 >>

args :

h
args

larg : 9
�
list

�i

3
777775

Comment: Rules N8, N11 and N14 below are regular grammar rules (though lexicon-derived in their
nature). In addition to these, the lexicon items O8, O11 and O14 constitute the lexicon of the normalized
grammar (see below).

N8 Lexicon items are normalized into Functor-Introducing rules. The semantics constituent is created as
the second body element, and is made reentrant with the head semantics.
This lexicon-derived rule covers the case of proper nouns. The semantic constant john in the original
lexicon item has been replaced with pn, which is the greatest type subsuming the former. No other
FI rule created thus far uni�es with this one, hence a new FI rule (N8) is created.

5
h
args

larg :

�
list

�i 1
�
pn

�
=)

2
66664

phrase

syn :

h
syn

cat :

�
np

�i
sem : 1

str : < 1 >

args : 5

3
77775

N11 This lexicon-derived rule covers the case of intransitive verbs (v intrans).

6
h
args

larg :

�
list

�i 17

2
664

�-bind

var : 5
�
sem

�
rest : 1

"
arg 1

pred :

�
v intrans

�
arg1 : 5

#
3
775 =)

2
66664

phrase

syn :

h
syn

cat :

�
vi

�i
sem : 17

str : < 1 >

args : 6

3
77775

33

N14 This lexicon-derived rule covers the case of adverbs (adv).

5
h
args

larg :

�
list

�i 1
�
adv

�
=)

2
66664

phrase

syn :

h
syn

cat :

�
advp

�i
sem : 1

str : < 1 >

args : 5

3
77775

Argument-Filling rules

N2 The semantics of the head in rule O2 is reentrant with that of the second body constituent (the semantic
head), hence the prototype rule is a chain one. The �rst body constituent is thus moved to the argument
list of the semantics head (more precisely, it is pushed upon the generic list of arguments, denoted with
7).

2
6666666666666666666664

phrase

syn :

h
syn

cat :

�
vp

�i
sem :

"
�-bind

var : 5
�
sem

�
rest : 6

�
funct

�
#

str : 4
�
list

�

args :

2
6666666664

args

larg :

2
666666664

ne list

hd :

2
666664

phrase

syn :

h
syn

cat :

�
np

�i
sem : 5

str : 3
�
list

�
args :

h
args

larg :

�
e list

�i

3
777775

tl : 7
�
list

�

3
777777775

3
7777777775

3
7777777777777777777775

=)

2
666664

phrase

syn :

h
syn

cat :

�
s

�i
sem : 6

str : << 3 >;< 4 >>

args :

h
args

larg : 7

i

3
777775

Lexicon

The lexicon (rules O8, O11 and O14) of G
e
O .

Rearrangement rules

Rules R1 �R3 added by the normalization algorithm.

3.4.9 Sample derivation with the normalized grammar

Here we show derivation of the sentence \John smokes today" with Ge
N .2

66666666666664

phrase

syn :

h
syn

cat :

�
s

�i

sem :

2
66664

arg 2

pred :

�
mod

�
arg1 : 6

"
arg 1

pred :

�
smoke

�
arg1 : 5

�
john

�
#

arg2 : 7
�
today

�

3
77775

str : < 5 ; 6 ; 7 >

args :

h
args

larg :

�
e list

�i

3
77777777777775

(N2)
�!

34

2
66666666666666666666666666664

phrase

syn :

h
syn

cat :

�
vp

�i

sem :

2
66666664

�-bind

var : 51
�
john

�

rest :

2
66664

arg 2

pred :

�
mod

�
arg1 : 61

"
arg 1

pred :

�
smoke

�
arg1 : 51

#

arg2 : 71
�
today

�

3
77775

3
77777775

str : < 61 ; 71 >

args :

2
6666666664

args

larg :

2
666666664

ne list

hd :

2
666664

phrase

syn :

h
syn

cat :

�
np

�i
sem : 51

str : < 51 >

args :

h
args

larg :

�
e list

�i

3
777775

tl :

�
e list

�

3
777777775

3
7777777775

3
77777777777777777777777777775

(N3)
�!

2
666666666666666666666664

phrase

syn :

h
syn

cat :

�
vp

�i

sem :

2
664

�-bind

var : 52
�
john

�
rest : 62

"
arg 1

pred :

�
smoke

�
arg1 : 52

#
3
775

str : < 62 >

args :

2
6666666664

args

larg :

2
666666664

ne list

hd :

2
666664

phrase

syn :

h
syn

cat :

�
np

�i
sem : 52

str : < 52 >

args :

h
args

larg :

�
e list

�i

3
777775

tl :

�
e list

�

3
777777775

3
7777777775

3
777777777777777777777775

2
666664

phrase

syn :

h
syn

cat :

�
advp

�i
sem : 72

�
today

�
str : < 72 >

args :

h
args

larg :

�
e list

�i

3
777775

2
66664

�-bind

var : 52

rest :

2
64

arg 2

pred :

�
mod

�
arg1 : 62

arg2 : 72

3
75

3
77775

(N11)
�!

2
6666666664

args

larg :

2
666666664

ne list

hd :

2
666664

phrase

syn :

h
syn

cat :

�
np

�i
sem : 53

�
john

�
str : < 53 >

args :

h
args

larg :

�
e list

�i

3
777775

tl :

�
e list

�

3
777777775

3
7777777775

2
664

�-bind

var : 53

rest : 63

"
arg 1

pred :

�
smoke

�
arg1 : 53

#
3
775 : : :

: : :

2
666664

phrase

syn :

h
syn

cat :

�
advp

�i
sem : 73

�
today

�
str : < 73 >

args :

h
args

larg :

�
e list

�i

3
777775

2
66664

�-bind

var : 53

rest :

2
64

arg 2

pred :

�
mod

�
arg1 : 63

arg2 : 73

3
75

3
77775

(R2)
�!

35

2
666664

phrase

syn :

h
syn

cat :

�
np

�i
sem : 54

�
john

�
str : < 54 >

args :

h
args

larg :

�
e list

�i

3
777775

2
664

�-bind

var : 54

rest : 64

"
arg 1

pred :

�
smoke

�
arg1 : 54

#
3
775

2
666664

phrase

syn :

h
syn

cat :

�
advp

�i
sem : 74

�
today

�
str : < 74 >

args :

h
args

larg :

�
e list

�i

3
777775

2
66664

�-bind

var : 54

rest :

2
64

arg 2

pred :

�
mod

�
arg1 : 64

arg2 : 74

3
75

3
77775

(N8;N14)
�!

h
args

larg :

�
e list

�i 55
�
john

�
2
664

�-bind

var : 55

rest : 65

"
arg 1

pred :

�
smoke

�
arg1 : 55

#
3
775
h
args

larg :

�
e list

�i 75
�
today

�
2
66664

�-bind

var : 55

rest :

2
64

arg 2

pred :

�
mod

�
arg1 : 65

arg2 : 75

3
75

3
77775

(R3)
�!

56
�
john

�
2
664

�-bind

var : 56

rest : 66

"
arg 1

pred :

�
smoke

�
arg1 : 56

#
3
775 76

�
today

�
2
66664

�-bind

var : 56

rest :

2
64

arg 2

pred :

�
mod

�
arg1 : 66

arg2 : 76

3
75

3
77775

As mentioned above, derivation with GN terminates with a sequence of meaning primitives, which to-
gether comprise the input logical form.

3.5 Grammar inversion

3.5.1 The nature of inversion

As explained above, the inversion transforms a normalized grammar into a form suitable for generation.
In what follows we refer to the rules of the inverted grammar as \inverted" rules. The inverted grammar is

obtained from the the normalized one: the inversion algorithm examines various chains of Argument-Filling
rules terminated with Functor-Introducing rules. As we explained in Section 3.4, chains of AF rules collect
arguments and \route" them to their respective functors provided by the FI rules. A Functor-Introducing
rule at the end of a chain can be viewed as \consuming" the predicate and raising its arguments to the
surface, to be processed recursively in the same manner. The inversion algorithm concatenates normalized
rules into chains and creates a new (inverted) rule from the two ends of each such chain. Thus, applying an
inverted rule is equivalent to dealing with the predicate and simultaneously producing all of its arguments,
to be processed next.

The aim of inversion is to create rules that allow systematical \parsing" (consumption) of logical forms.
Upon inversion, the grammar attains the nested predicate-argument structure similar to that of meaning
logical forms. Now both the semantic form and grammar rules may be \traversed" in parallel.

As a result, whenever the head of an inverted rule represents a logical form (in the predicate-argument
notation, i.e., a predicate applied to its arguments), the rule body has a constituent corresponding to each
of the head arguments, as well as an additional constituent corresponding to the predicate itself. This allows
straightforward decomposition of complex logical forms into semantic primitives, by consuming the semantic
predicate and then recursively consuming its arguments.

For example, let us consider rule I6 of the inverted grammar (see Section 3.5.3 below). The semantics
of the rule head is formed by applying semantics of an intransitive verb to that of a noun phrase (thus, the
former acts as a predicate and the latter as an argument). The �rst body constituent corresponds to the
argument of the head semantics (5), while the second constituent represents the predicate (1).

36

Originally, the generation algorithm presented in (Samuelsson, 1995) was designed to improve the e�-
ciency of the Semantic-Head-Driven Generation (devised by Shieber et al. (1990)). The SHDG algorithm
operates by picking a non-chain rule and connecting it to an upper node in the derivation tree which has
the same semantic form, while the connection is made through a series of chain rules. In this scenario many
di�erent rule combinations are attempted, vastly increasing the amount of spurious search. Samuelsson's
algorithm remedies this situation by concurrently processing all chains leading to a particular logical form,
before any rule is actually applied.

The inversion phase examines all the possible chains of AF rules, and attempts to terminate each such
chain with a suitable FI rule; the arguments collected along the chain are then consumed by the trailing
FI link. Combining AF rules into chains is performed in such a way that the body of one rule uni�es with
the head of another, while the body of the penultimate rule uni�es with the head of the FI rule. Here we
can clearly see the necessity of the normalization phase to restructure the chain rules into unit rules, thus
allowing to combine them into chains. Moreover, normalization sets the stage for proper argument passing
in chains.

When a chain has been maximally expanded (i.e., no other AF rule may further extend it) and properly
terminated, it originates a series of inverted rules. First, the entire chain makes a new rule | the head of the
�rst rule in the chain constitutes the head, and the body of the trailing FI rule constitutes the body of the
new rule. Furthermore, sub-chains that begin at AF rules with a non-preterminal syntactic category in the
head also induce inverted rules, in the same way as the complete chain (see Section 3.5.4 for the examples
when such rules can be used).

To minimize the number of rules, every new rule is compared against the already existing ones, for
possible subsumption. The algorithm performs subsumption check between the MRS of the new rule and
MRSs of the rules created so far. If any existing MRS is more general than the new one, than it is replaced
with the latter, and if it is more speci�c { the latter is discarded. Otherwise, the new rule is added to the
inverted grammar.

If a FI rule cannot terminate any chain of AF rules, it makes an inverted rule on its own (as if preceded
by a zero-length chain). In any case, after a chain is combined and terminated with a FI rule, the head of
the �rst rule in the chain is modi�ed to set < H args larg >= [e list]. The reason is that all the possible
arguments have already been collected along the chain (or there are no arguments, if the chain is of zero
length), hence there is no need to expect any more.

Processing lexicon-derived rules

Let us consider what happens during inversion to lexicon-derived FI rules. According to Step 4 of the
normalization algorithm, such rules are of the form A [H]) H , where A =< H args > is a generic lists
of arguments, and [H] =< H sem > { the semantics constituent. When such a rule terminates a chain
of AF rules, A is instantiated to the list of arguments collected along the chain and passed to the functor
introduced by the lexicon-derived rule. The FS representing A is of type args, and its larg feature encodes
a linked list of arguments using the standard list types (ne list and e list). The inversion algorithm then

attens such a list to a sequence of FSs, and thus creates the body of the new rule.

This step is equivalent to applying the rearrangement rules R1 � R3 of GN , until the list is
attened
entirely. In the normalized grammar, the particular values of the argument lists are unknown at the time the
grammar is created, hence the rules R1�R3 are required to process constructs of type args, when such appear
during actual derivations. On the contrary, in the inverted grammar argument lists are fully instantiated,
due to the chain combination which collects the arguments and passes them to the FI rule at the end of
the chain. Therefore, the
attening of argument lists may be performed at the time of grammar inversion,
i.e., at compilation time instead of at run-time. Consequently, rearrangement rules are not necessary in GI

(since their e�ect is already built into the rules).
After the list of arguments is
attened, the FSs of the resulting sequence are reordered to re
ect the

actual argument order of the head semantic core. This is performed in a similar manner as bodies of FI rules
are reordered in Step 2 of the normalization algorithm). Again, this particular transformation could not
have been performed during normalization, as the body of the lexicon-derived rules only gets instantiated

37

during inversion, due to chain combination.
The inversion algorithm also includes a special provision for handling semantic primitives that can serve

both predicates and arguments. This case is special, since a feature structure whose semantics serves a
predicate necessarily has a non-empty argument list, while in a feature structure representing an argument
this list may be empty. Since this case goes beyond the scope of our sample grammar, we state the necessary
provision in Step 1(d)iii of the Inversion algorithm and give the detailed explanation later in Section 3.5.5.

Termination

Since the inversion algorithm inspects all the possible chains of AF rules, in order for the algorithm to
terminate the input grammar (GN) must not have purely AF cycles. Hence an analogous condition needs
to be assumed for GO , namely, it must not have purely chain-rule cycles. In other words, we require GO to
satisfy the o�-line parsability criterion, as formulated in (Kaplan and Bresnan, 1982, pp.264-266).

To ensure termination of the inversion phase, rule chains are actually combined \from the end", i.e.,
starting from the trailing FI rule. This way the semantics of the FI rule prevents in�nite chain expansion.

Derivation with inverted grammars

According to the description above, rules of inverted grammars re
ect the predicate-argument structure of
their head's logical form. Thus, the body of an inverted rule has one constituent corresponding to each
argument of the head's semantics, as well as another constituent corresponding to the semantics predicate
of the head logical form. Moreover, the order of the body elements mirrors a postorder traversal of the head
semantics, i.e., the last body constituent corresponds to the predicate, while the rest of the constituents
appear in the order of their respective arguments.

A GI derivation terminates (if at all) when no more inverted rules can be applied. If the derivation
terminates successfully, then all the FSs in the resultant sentential form are of types which are subtypes
of sem. Such feature structures result from the semantics constituents, which are the last constituents of
FI rules created during normalization. According to the normalization algorithm (Steps 2 and 4) those are
actually semantic primitives that comprise logical forms. Therefore, when inverted rules are applied one
after another during derivations, such postorder sequences of semantic primitives accumulate, while each
sequence corresponds to some part of the input logical form.

Thus, when a derivation with GI terminates successfully (if at all), it ends up with a sequence of meaning
primitives, which correspond to the postorder decomposition (
attening) of the entire input logical form. This
fact is crucial in the proposed generation algorithm (see Chapter 4). Given a logical form with the desired
meaning, the generation algorithm
attens it into a postorder sequence of arguments and predicates. This
sequence initializes the chart and the bottom-up generation starts. Since the bodies of inverted rules also
re
ect the predicate-argument structure of the head semantic form, the dot movement operation matches
them against the contents of the chart in a straightforward manner. During generation, application of
the inverted rules proceeds until the entire semantics input (all the chart initialization entries) has been
consumed.

In the light of the above description, we can now explain the remark in Section 3.4.3 about the se-
lection of argument carriers in Functor-Introducing rules. If arguments are not eventually passed to their
respective functors, the sequence of semantic primitives which results from a derivation with GI will not
be in a correct postorder format (arguments followed by their predicates). In fact, this sequence will lack a
systematical structure our generation algorithm relies on, therefore obstructing systematical \consumption"
of input semantic forms. In some cases, a derivation with GI might even get stuck because of incorrect
argument transfer. Consider for example, that in rule O3 the second body constituent were designated as
the argument carrier, instead of the �rst one. Then the normalized version of this rule (N3) would be of
the form V P AdvP (A) [V P]) V P (A), and the inverted rule I2 due to concatenation of N2 and N3 would
be V P AdvP (NP) [V P]) S. Since there are no Argument-Filling rules where AdvP acts as a predicate,
the only inverted rule handling AdvP is I14, which does not expect any arguments. In the example dis-
cussed, the feature structure representing AdvP (NP) has a non-empty argument list (namely, there is an
NP argument), therefore it cannot unify with the head of I14. Consequently, the derivation can proceed no

38

further. Thus it is the designated argument carriers of grammar rules that are responsible for correct routing
of arguments. We require argument carriers to be speci�ed manually, since it is not immediately clear how
to perform this task automatically in the general case.

Auxiliary de�nitions

Prior to formally stating the inversion algorithm we de�ne the rule chain and the operation of rule combi-
nation. We use \#" to denote that a partial operation is de�ned on its arguments and \"" otherwise.

Rule combination and rule chains

1. If R = (B1 : : : Bl) C) 2 GFI , then R is a rule chain.

2. If R = (B1 : : : Bl) Dm) : : :) D2) D1) C) is a rule chain, Q = (D0) H) 2 GAF and
uni�able(C;D0), then R0 = (B0

1 : : : B
0

l) D0

m) : : :) D0

2) D0

1) D0

0) H 0) is a rule chain,
where D0

0 = C tD0 and B
0

1; : : : ; B
0

l ; D
0

m; : : : ; D
0

2; D
0

1; H
0 are B1; : : : ; Bl; Dm; : : : ; D2; D1; H respectively

as changed upon the uni�cation of C and D0.

The combination of R and Q into R0 is denoted by R0 = R �Q. If :uni�able(C;D0) then (R �Q) ".

3. There are no other rule chains.

4. The constituents B1 : : : Bl in items (1) and (2) above are collectively referred to as the body of a rule
chain.

It should be emphasized that a rule chain is not a grammar rule but rather an intermediate conversion
result, therefore it may contain multiple production symbols (\) "). Observe that the body of the last rule
in the chain (the FI rule) may have more than one constituent.

Let us consider an example of rule combination. We start \growing" a chain with Functor-Introducing
rule N11 = A [Vi]) Vi(A). According to item (1) of the above de�nition, this rule constitutes a rule chain by
itself. We then combine this rule chain with Argument-Filling rule N2 = V P (NP)) S. The combination
is possible since the head Vi(A) of N11 uni�es with the body V P (NP) of N2. The uni�cation is performed
in the context of the two rules, and both rules become more speci�c. Namely, the generic argument list A
is instantiated to NP , and V P becomes Vi since the latter is more speci�c. Thus, N11 �N2 = NP [Vi])
Vi(NP)) S. According to item (4) of the above de�nition, the constituents NP and [Vi] together comprise
the body of the chain N11 � N2. Since there is no Argument-Filling rule whose body uni�es with S, the
example chain cannot be extended any more.

Preterminal and argument categories For the inversion algorithm to operate correctly, we distinguish
two special kinds of syntactic categories:

Preterminal categories A syntactic category c is a preterminal category if

1. there exists a lexicon entry (\word"! H) 2 Lexicon(GO), s.t. < H syn cat >= c, and

2. there does not exist a grammar rule (B1 : : : Bm) H) 2 GO s.t. < H syn cat >= c.

In what follows, ptc(c) denotes the fact that c is a preterminal category. The set of all the preterminal
categories for the grammar is denoted by PTC(GO).

� The path < H syn cat > used in the above de�nition necessarily exists according to the assump-
tions on the minimal required type hierarchy of the input grammars, see Section 3.2.3.

� Note that PTC(GO) is easily computable from Lexicon(GO) in O(jLexicon(G)j) time. In our
implementation, PTC(GO) is computed during lexicon normalization. In the grammar of the
running example, PTC(Ge

O) = fNP; Vi; AdvPg, while S; V P =2 PTC(Ge
O).

39

Argument categories If B0(B1 : : : Bm)) H is an AF rule produced by the Normalization algorithm,
then < B1 syn cat >; : : : ; < Bm syn cat > are argument categories. The set of all the argument
categories for the grammar is denoted by ARGC(GN).

3.5.2 Inversion algorithm

1. Chain combination.

Calculate the set RC(GN) of maximal rule chains over GN :

RC(GN) := ;

For every R = (B1 : : : Bl [H]) H) in GFI :

(a) Let R0 = R;

(b) While there is Q = (D) C) in GAF

such that (R0 �Q) # and :(ptc(< D syn cat >) ^ :ptc(< H 0 syn cat >))
do R0 = R0 �Q;
Comment: A rule (in the beginning of the chain R0) with a non-preterminal category in the head
(H 0) cannot be concatenated with an AF rule Q whose body has a preterminal category. The
latter can only expand some lexicon-derived rule whose head has a preterminal category.

(c) Set < H 0 args larg >= [e list];

(d) If R is a lexicon-derived rule:

i. Flatten the body of R0 (of type args), which encodes a list of arguments collected along the
chain, to obtain a shallow sequence of body constituents: B0

1 : : : B
0

m.

ii. Restructure the body of R0 = (B0

1 : : : B
0

m [H 0]) H 0) to re
ect the actual argument order of
the H 0 semantic core:
Let SC =< H 0 sem rest� > be the semantic core of H'.
Then R0 = (B0

i1
: : : B0

im
[H]) H 0),

where 8k; 1 � k � m : reentrant(< Bik sem rest� >;< SC argk >).

iii. If any AF rules have been combined with R in Step 1b and < H syn cat >2 ARGC(GN),
create an additional chain which consists of a single rule R00 = R and set < H 00 args larg >=
[e list]. Add R00 to RC(GN): RC(GN) = RC(GN) [fR00g.
Comment: This is to allow for the possibility of semantic primitives that can serve both
predicates and arguments. This rule has no arguments and hence its body does not need
restructuring.

(e) RC(GN) = RC(GN) [fR0g.

Comment: Step 1 of the algorithm terminates, since by assumption (Section 3.5.1) there are no purely
AF cycles.

2. Creation of the inverted rules proper.

Decompose the combined chains into rules:

(a) GI := ;

(b) For each R0 = (B0

j1
: : : B0

jl
) B0

j�1) : : :) B0

1) H 0) in RC(GN) :

i. If j = 1 then add rule(GI ; R
0).

Comment: a chain of length 1.

ii. else
rI := (B0

j1
: : : B0

jl
) H 0); add rule(GI ; rI);

For n := 1 to (j � 1)

40

Case Combined Terminating Chain backbone
AF rules FI rule

1 N2 N3 V P (NP) AdvP [V P]) V P (NP)) S
2 N2 N11 NP [Vi]) Vi(NP)) S
3 | N8 [NP]) NP
4 | N14 [NP]) AdvP

Table 3.1: Terminated chains of combined Ge
N rules.

A. if < Bn syn cat >=2 PTC(GO)
(where Bn is B0

n before the uni�cations of Step 1)
then rI := (B0

j1
: : : B0

jl
) B0

n); add rule(GI ; rI);

B. else break from the for loop
/* continue with another R0 2 RC(GN) (if any) */

3. The lexicon of GO makes the lexicon of GI .

Note: As follows from the Inversion algorithm, the rearrangement rules R1; R2; R3 2 GN are disposed
of and not added to GI (since their e�ect is \built into" the rules of GI in Step 1 of the algorithm).

3.5.3 Inverted sample grammar

Let us now demonstrate the grammar Ge
I which results from applying the inversion algorithm to Ge

N . To
better illustrate how the inversion algorithm works, we show in Table 3.1 the intermediate results received
in processing Ge

N after Step 1. Namely, we list the elements of RC(Ge
N) and for each element specify which

Ge
N rules have licensed its creation. For brevity sake we only display the CF backbones of combined chains.
In what follows we list the rules of Ge

I . Whenever appropriate, comments are provided to explain how the
inverted rules result from the normalized ones; case numbers in the comments refer to the lines of Table 3.1.

Initial symbol

Exactly the same as in Ge
N .

Inverted grammar rules

The numbering of the inverted rules below corresponds to that in (Samuelsson, 1995).

I2 Case 1. The two ends of the chain are taken for a new rule.

2
6666666666666666666664

phrase

syn :

h
syn

cat :

�
vp

�i
sem :

"
�-bind

var : 5
�
sem

�
rest : 6

�
funct

�
#

str : 4
�
list

�

args :

2
6666666664

args

larg :

2
666666664

ne list

hd :

2
666664

phrase

syn :

h
syn

cat :

�
np

�i
sem : 5

str : 3
�
list

�
args :

h
args

larg :

�
e list

�i

3
777775

tl :

�
e list

�

3
777777775

3
7777777775

3
7777777777777777777775

2
666664

phrase

syn :

h
syn

cat :

�
advp

�i
sem : 7

�
sem

�
str : 9

�
list

�
args :

h
args

larg :

�
e list

�i

3
777775
"
�-bind

var : 5

rest : 17

#
=)

41

2
66666666664

phrase

syn :

h
syn

cat :

�
s

�i

sem : 17

2
64

arg 2

pred :

�
mod

�
arg1 : 6

arg2 : 7

3
75

str : << 3 >;< 4 >;< 9 >>

args :

h
args

larg :

�
e list

�i

3
77777777775

I4 Case 1. Since the intermediate VP is not a pre-terminal, the proper sub-chain
V P (NP) AdvP [V P]) V P (NP) also forms an inverted rule.

2
6666666666666666666664

phrase

syn :

h
syn

cat :

�
vp

�i
sem :

"
�-bind

var : 5
�
sem

�
rest : 6

�
funct

�
#

str : 4
�
list

�

args : 8

2
6666666664

args

larg :

2
666666664

ne list

hd :

2
666664

phrase

syn :

h
syn

cat :

�
np

�i
sem : 5

str : 3
�
list

�
args :

h
args

larg :

�
e list

�i

3
777775

tl :

�
e list

�

3
777777775

3
7777777775

3
7777777777777777777775

2
666664

phrase

syn :

h
syn

cat :

�
advp

�i
sem : 7

�
sem

�
str : 9

�
list

�
args :

h
args

larg :

�
e list

�i

3
777775 20 =)

2
6666666666664

phrase

syn :

h
syn

cat :

�
vp

�i

sem : 20

2
66664

�-bind

var : 5

rest : 17

2
64

arg 2

pred :

�
mod

�
arg1 : 6

arg2 : 7

3
75

3
77775

str : << 4 >;< 9 >>

args : 8

3
7777777777775

I6 Case 2.

2
666664

phrase

syn :

h
syn

cat :

�
np

�i
sem : 5

�
sem

�
str : 3

�
list

�
args :

h
args

larg :

�
e list

�i

3
777775

2
664

�-bind

var : 5
�
sem

�
rest : 1

"
arg 1

pred :

�
v intrans

�
arg1 : 5

#
3
775 =)

2
666664

phrase

syn :

h
syn

cat :

�
s

�i
sem : 1

str : << 3 >; 1 >

args :

h
args

larg :

�
e list

�i

3
777775

I7 Case 2. Since V P is not a pre-terminal, the proper subchain NP [Vi]) Vi(NP) also makes an inverted
rule.

42

9

2
666664

phrase

syn :

h
syn

cat :

�
np

�i
sem : 5

�
sem

�
str : 3

�
list

�
args :

h
args

larg :

�
e list

�i

3
777775 17

2
664

�-bind

var : 5

rest : 1

"
arg 1

pred :

�
v intrans

�
arg1 : 5

#
3
775 =)

2
666666664

phrase

syn :

h
syn

cat :

�
vi

�i
sem : 17

str : < 1 >

args :

2
4 args

larg :

"
ne list

hd : 9

tl :

�
e list

�
#35

3
777777775

I11 Case 3. Obtained from the FI rule N8, as it cannot be combined with any AF rule.

1
�
pn

�
=)

2
666664

phrase

syn :

h
syn

cat :

�
np

�i
sem : 1

str : < 1 >

args :

h
args

larg :

�
e list

�i

3
777775

I14 Case 4. Obtained from the FI rule N14, as it cannot be combined with any AF rule.

1
�
adv

�
=)

2
666664

phrase

syn :

h
syn

cat :

�
advp

�i
sem : 1

str : < 1 >

args :

h
args

larg :

�
e list

�i

3
777775

Lexicon

The lexicon (rules O8, O11 and O14) of G
e
O .

3.5.4 Sample derivation with the inverted grammar

Let us demonstrate a derivation of the sample sentence \John smokes today" with Ge
I .2

66666666666664

phrase

syn :

h
syn

cat :

�
s

�i

sem :

2
66664

arg 2

pred :

�
mod

�
arg1 : 6

"
arg 1

pred :

�
smoke

�
arg1 : 5

�
john

�
#

arg2 : 7
�
today

�

3
77775

str : < 5 ; 6 ; 7 >

args :

h
args

larg :

�
e list

�i

3
77777777777775

(I2)
�!

43

2
666666666666666666666664

phrase

syn :

h
syn

cat :

�
vp

�i

sem :

2
664

�-bind

var : 52
�
john

�
rest : 62

"
arg 1

pred :

�
smoke

�
arg1 : 52

#
3
775

str : < 62 >

args :

2
6666666664

args

larg :

2
666666664

ne list

hd :

2
666664

phrase

syn :

h
syn

cat :

�
np

�i
sem : 52

str : < 52 >

args :

h
args

larg :

�
e list

�i

3
777775

tl :

�
e list

�

3
777777775

3
7777777775

3
777777777777777777777775

2
666664

phrase

syn :

h
syn

cat :

�
advp

�i
sem : 72

�
today

�
str : < 72 >

args :

h
args

larg :

�
e list

�i

3
777775

2
66664

�-bind

var : 52

rest :

2
64

arg 2

pred :

�
mod

�
arg1 : 62

arg2 : 72

3
75

3
77775

(I7)
�!

2
666664

phrase

syn :

h
syn

cat :

�
np

�i
sem : 54

�
john

�
str : < 54 >

args :

h
args

larg :

�
e list

�i

3
777775

2
664

�-bind

var : 54

rest : 64

"
arg 1

pred :

�
smoke

�
arg1 : 54

#
3
775

2
666664

phrase

syn :

h
syn

cat :

�
advp

�i
sem : 74

�
today

�
str : < 74 >

args :

h
args

larg :

�
e list

�i

3
777775

2
66664

�-bind

var : 54

rest :

2
64

arg 2

pred :

�
mod

�
arg1 : 64

arg2 : 74

3
75

3
77775

(I11;I14)
�!

56
�
john

�
2
664

�-bind

var : 56

rest : 66

"
arg 1

pred :

�
smoke

�
arg1 : 56

#
3
775 76

�
today

�
2
66664

�-bind

var : 56

rest :

2
64

arg 2

pred :

�
mod

�
arg1 : 66

arg2 : 76

3
75

3
77775

As mentioned above, derivation with GI terminates with a sequence of meaning primitives, which corre-
spond to the postorder decomposition (
attening) of the input logical form.

Explanation of the sample derivation

The nature of the above derivation may appear counterintuitive at the �rst glance. The familiar syntactic
analysis (cf. Section 3.3.3) calls to �rst apply the rule NP V P) S (O2), and then to decompose the V P
using the rule V P AdvP) V P (O3). This order of rule application re
ects that the adverb modi�es the
verb, not the entire sentence, and the noun phrase joins the verb already modi�ed.

As opposed to this, the �rst inverted rule to be applied is I2 = V PAdvP [mod]) S, which detaches
the adverb from the verb. Only then is rule I7 = NP [Vi]) Vi applied to decompose the verb phrase
into a noun phrase and a verb. Observe that the order in which the inverted rules are applied re
ects the
predicate-argument structure of the given logical form. The semantics supplied with the initial symbol is
mod(sleep(john, today)), hence rule I2 singles out the arguments sleep(john) and today of the predicate
mod. Then rule I7 decomposes the semantics of the verb phrase into the argument (john) and the predicate
(sleep), organized in the postorder arrangement.

Additional examples

In conclusion we brie
y discuss the cases when the rest of the inverted rules (not used in the example above)
may be employed.

44

1. Rule I4 can be used if a sentence contains two adverbs. For example, suppose the sample grammar
contained a lexical entry for the word \slowly" similar to entry O14 for the word \today". Then the
sentence \John smokes slowly today" having the meaning mod(mod(smoke(john), slowly), today

) could be derived as follows. First, rule I2 would be applied to the input feature structure (similarly
to the example in Section 3.5.4). This would detach the outer mod predicate from its two arguments
| V P with the semantics mod(smoke(john), slowly) and AdvP with the semantics today. Then
rule I4 would develop the arguments of the former (i.e., the inner mod predicate of the given logical
form). The application of rule I4 would create feature structures for the V P and the AdvP (having
the semantics smoke(john) and slowly, respectively), followed by a FS for the mod predicate. Finally,
rule I7 would decompose the remaining V P exactly as in the example above.

2. Rule I6 can be used to derive the simple sentence \John smokes":

2
666666664

phrase

syn :

h
syn

cat :

�
s

�i
sem : 6

"
arg 1

pred :

�
smoke

�
arg1 : 5

�
john

�
#

str : < 5 ; 6 >

args :

h
args

larg :

�
e list

�i

3
777777775

(I6)
�!

2
666664

phrase

syn :

h
syn

cat :

�
np

�i
sem : 51

�
john

�
str : < 51 >

args :

h
args

larg :

�
e list

�i

3
777775

2
664

�-bind

var : 51

rest : 61

"
arg 1

pred :

�
smoke

�
arg1 : 51

#
3
775 (I11)

�!

52
�
john

�
2
664

�-bind

var : 52

rest : 62

"
arg 1

pred :

�
smoke

�
arg1 : 52

#
3
775

3.5.5 Advanced issues

Semantic primitives that can serve both predicates and arguments

Step 1(d)iii of the Inversion algorithm constitutes a special provision for handling semantic primitives that
can serve both predicates and arguments. In what follows we explain why this case is special and how it
should be addressed during grammar inversion.

We use here a small subset of the sample grammar of Appendix B. For the sake of briefness, only the
CF backbone of the grammar is shown. Let G1

O be as follows:

� Grammar rules

O1
1 NP Vi) S

O1
2 Vt NP) Vi

� Lexicon

O1
3 john ! NP

45

O1
4 mary ! NP

O1
5 loves ! Vt

The normalized grammar G1
N looks as follows. If both O1

1 and O1
2 are chain rules, then during normal-

ization they are transformed into corresponding AF rules:

N1
1 NP (Vi)) S

N1
2 Vt(NP)) Vi

Lexicon entries O1
3 { O1

5 induce the following FI rules:

N1
3 A [NP]) NP (A)

N1
5 A [Vt]) Vt(A)

According to the de�nition in Section 3.5.1, ARGC(G1
N) = fVi; NPg.

Without Step 1(d)iii, the Inversion algorithm creates G1
I as follows:

I11 Vi [NP]) S

I12 NP [Vt]) Vi

Now let us try to derive the sentence \John loves Mary" using G1
I . First, rule I

1
1 is applied S

(I11)�! Vi [NP].

Then rule I12 produces Vi [NP]
(I12)�! NP [Vt] [NP]. Here we run into a problem since there is no inverted

rule to handle the �rst constituent (NP) of the resultant sentential form.
Let us analyze the source of this problem. In rule N1

1 , NP is a predicate whose argument (Vi) appears on
its argument list. When this rule is combined with rule N1

3 during inversion, the generic argument list A is
instantiated to Vi. That is, rule I

1
1 is created on the assumption that the argument list of NP is not empty,

since such is the only rule combined with N1
3 . Speci�cally, there is no inverted rule which accomodates an

NP with an empty argument list, while this is exactly the case we exempli�ed above.
This case can easily be predicted by examining the normalized grammar o�ine, prior to its inversion.

Indeed, rule N1
2 contains NP in an argument role which does not have any arguments of its own (that is

why NP 2 ARGC(G1
N)). Therefore, an additional inverted rule is necessary to facilitate this case, namely

I13 = [NP]) NP

(that is, rule N1
3 in which A is instantiated to an empty list and consequently removed from the body). The

necessary precondition to create such a rule is that the respective lexicon-derived rule (N1
3) has an argument

syntactic category in the head and is combined with other AF rules (i.e., rules in which NP serves as a
predicate and therefore has a non-empty argument list). Formally speaking, an additional inverted rule is
created for a lexicon-derived FI rule r = A [H]) H(A), if

1. r terminates some chain of AF rules, and

2. < H syn cat >2 ARGC(GN).

This additional rule is created in exactly the same way as for the lexicon-derived rules which do not terminate
any chain | the new rule has no arguments and hence a single (semantic) body constituent (cf. rule I13
above).

46

Chapter 4

Chart-Based Generation with Typed

Feature Structures

This chapter describes a chart-based generation algorithm for uni�cation grammars. Section 4.1 gives an
overview of the generation process. The generation algorithm proper is presented in Section 4.2. Section 4.3
shows an example of chart generation with the sample grammar. Finally, Section 4.4 explains how the
Abstract Machine for Parsing developed by Wintner (1997) is enhanced to also perform generation.

4.1 Chart generation

Our generation algorithm relies on the assumption that its input grammars are given in the appropriate
format. Namely, an input grammar should satisfy the following requirements:

1. The semantics associated with grammar rules is given in predicate-argument structure.

2. The body of each rule mirrors1 the predicate-argument structure of the head:

� exactly one body constituent corresponds to each argument of the head predicate,

� the mutual order of body constituents duplicates the argument order in the head semantics,

� an additional body constituent (situated in the last position) corresponds to the predicate of the
head logical form.

3. The str feature in the constituents of grammar rules traces the actual phrase structure of the language
de�ned by the grammar.

4. The lexicon supplied with the grammar allows to map semantic primitives (elements of logical forms)
into natural language words.

One possible way to obtain a suitable grammar is to invert a \parsing" grammar using the inversion
algorithm of Chapter 3. As we showed in Section 3.5, if a derivation with GI starting from a feature
structure F with semantics f terminates successfully, it ends up with a sequence of meaning primitives,
which correspond to the postorder traversal of the logical form f . Given such a sequence of semantic
elements, the generation algorithm reconstructs the analysis tree under a bottom-up control strategy.

1This requirement e�ectively states that the rule body re
ects postorder
attening of the head logical form (to the limited
depth of a single level).

47

4.1.1 Chart generation vs. chart parsing

We delineate the interrelation between parsing and generation by the following scheme. Given an phrase
w 2 L(GO), parsing it w.r.t. to GO yields a feature structure F such that < F sem >= f , where f 2 LF
and LF is some description language for logical forms, which conforms to the assumptions of Section 3.2.
On the other hand, generating from the input f (i.e., from a FS � such that < � sem >= f) w.r.t. to GI

(obtained by inverting GO), yields a feature structure F 0 such that < F 0 str > encodes a phrase w with
meaning f .

The generation algorithm presented here is a chart-based one, since it employs a table (chart) for storing
intermediate analysis results, similarly to chart parsing algortihms. Our algorithm was designed to use
the existing Abstract Machine engine for chart processing of uni�cation grammars (Wintner, 1997), with
the aim of creating a bidirectional NLP system. This way the generation extension of Amalia uses the
existing implementation of the chart processing routine, with appropriate modi�cations to actually perform
generation instead of parsing.

The nature of chart items is quite di�erent for parsing and generation. As opposed to parsing chart
items, which span a sub-sequence of the input string, generation items span a part (sub-form) of the input
logical form. In fact, this de�nes a way to decompose the input in either case into series of components. We
also observe that in both cases the analysis of the input (parsing or generation, respectively) is performed
by combining the components using the rules of the appropriate grammar (regular grammar in the case
of parsing, or inverted grammar in the case of generation). Thus, usual chart operations (namely, dot
movement and completion) may be used to apply grammar rules in both cases, regardless of the actual
processing direction.

The order of rule application during bottom-up generation is the reverse of that of a complementary
derivation with the inverted grammar. By complementary we mean here a derivation which starts from the
same feature structure that constitutes the input for the generation. Section 4.3 (in particular, Subsection
4.3.2) demonstrates a sample bottom-up chart generation, which is the reciprocal of the sample derivation
shown in Section 3.5.4.

In the case of generation the input is some meaning encoded as a nested logical form, and a NL grammar.
This form is �rst
attened to produce a linear sequence of feature structures, each containing some part of
the input semantics. Next these parts are mapped into NL constructs (words or phrases, also represented
with FSs) with the corresponding meaning. During generation these FSs are combined using the rules of
the inverted grammar, with semantics guiding the selection of rules to be applied. The str feature in the
constituents of the inverted rules (see Section 3.2.2) encodes parts of the phrase being generated, by tracing
the word order of the original NL grammar. Ultimately, if generation terminates successfully (i.e., with a
non-empty set of FSs whose semantics subsumes the entire input), the str value of each resultant FS encodes
a phrase with the desired meaning. This encoding uses feature structures to represent NL words in the
correct order. Further (grammar-independent) processing is required to convert such lists of FSs into regular
phrases (sequences of words); we refer to this step as \verbalization".

Since grammars in our formalism do not have an initial symbol, the generator may yield not only
\complete" phrases, but \partial" phrases as well. For example, when generating from the input form
mod(smoke(john), today), the phrase \smokes today" may be produced in addition to the expected \John
smokes today". This happens when all the parts of the input logical form are consumed, but some of
them remain on the argument list of the outer predicate. An example of this case is given in Section
4.3.4 below (cf. Section A.3.2). In order to �lter out such phrases, it is possible to prohibit non-empty
argument lists in the generation results, and during verbalization consider only feature structures whose
< : : : args larg >= [e list].

4.1.2 Chart operations

Let L = l0 : : : ln�1 be the chart initialization sequence (input to the chart processing routine). In the general
case, chart items are of the form
 = [j; B1 : : : Bm; k; status], where B1 : : : Bm are feature structures spanning
a part of L between the positions j and k | lj : : : lk, and status is either Active or Complete (designating

48

active or complete items, respectively). We refer to the second constituent of an item (B1 : : : Bm) as its
nucleus, and denote it as
̂.

The generation process performs the same two kinds of chart operations as parsing, namely, dot movement
and completion:

Dot movement: Given an active item � = [i�; B�
1 : : : B

�
l ; j

�;Act], a complete item � = [i� ; B� ; j�;Comp]

s.t. j� = i�, and a rule r = (A1 : : : Am) Am+1) s.t. l < m, dot movement uni�es �̂ and �̂ with the
corresponding constituents A1 : : : Al Al+1 of the rule, thus advancing the dot and creating a new item
I := I [[i�; A0

1 : : : A
0

l+1; j
� ;Act].

Completion: Given an active item � = [i�; B�
1 : : : B

�
m; j

�;Act] and a rule r = (A1 : : : Am) Am+1), the
completion operation matches the rule body with �̂, and creates a new item by taking the head A00

m+1

after all the uni�cations performed: I := I [[i�; A00

m+1; j
� ;Comp].

These two operations are performed in exactly the same way and by the same chart processing module
as for parsing. As mentioned above, this module runs blindly, without the notion of the actual task (parsing
or generation) being carried out.

The two major di�erences between parsing and generation algorithms are in chart initialization (scanning)
and interpretation of the �nal results. These phases are further explained in the sequel.

4.1.3 Initialization

The generation algorithm we propose implements a so-called chart generation, where a table (chart) is used
to store intermediate results (items built by applying the rules of GI to (parts of) the given logical form f).
The chart is a two-dimensional array I of size n� n, where n is the number of semantic primitives in f .

The given logical form is traversed recursively in a postorder manner and decomposed into a sequence
L = l0 : : : ln�1 of predicates and their arguments. Such a decomposition is performed along the features
which de�ne the predicate-argument structure, namely, pred and argi. Each li in the sequence L is a feature
structure corresponding to some part of f . The postorder traversal of f orders the elements of L and thus
numbers positions inside the logical form (vertices of the FS which correspond to roots of predicate and
arguments substructures).

The
attening procedure ignores quanti�ed variables which serve as arguments, and does not create li
items for them, so that they are not entered into the chart during initialization. The reason is that since
quanti�ed variables do not correspond to any actual semantic primitive, scanning cannot match them against
body constituents of (inverted) grammar rules. Let us consider an example of
attening a logical form which
contains quanti�ed variables. Consider the feature structure fse5 of Section 3.2.4, whose semantics encodes
the logical form 8x(man(x) ! smoke(x)) containing the (universally) quanti�ed variable x. Observe that
this logical form consists of three semantic primitives, namely, the (schematic) predicate 8x(P (x)! Q(x)),
and two arguments { man(x) and smoke(x). Therefore, it is these three primitives that should result from

attening the semantics of fse5. The postorder
attening discerns that the feature structure < fse5 sem >
has the features pred, arg1 and arg2, and recursively proceeds to the �rst argument (via arg1). In its
turn, the feature structure < fse5 sem arg1 > is a predicate-argument structure by itself, hence its arg1
feature should be explored �rst2. This is when the algorithm encounters a quanti�ed variable (note that
< fse5 sem arg1 arg1 >=< fse5 sem pred var >, which encodes the quanti�ed variable x). As mentioned
above, we do not want to produce separate chart items for quanti�ed variables (otherwise, the example logical
form yields �ve distinct semantic primitives, instead of the expected three). Consequently, the
attening
algorithm retreats, and only considers the entire expression man(x). The expression smoke(x) is treated
similarly, and the algorithm ultimately returns to process the predicate 8x(P (x)! Q(x)).

Let us consider the nature of feature structures which may form nuclei of chart items. Recall that the
nucleus of an item
 = [j; B1 : : : Bm; k; status] is its second constituent:
̂ = B1 : : : Bm. When the input
logical form is decomposed into a postorder sequence of semantic primitives, the resulting FSs are in fact

2Pursuant to the postorder traversal policy.

49

semantic cores and not full semantics constructs. Observe that according to the grammar inversion algorithm
(Step 2 of the Normalization algorithm and Step 1(d)ii of the Inversion algorithm) bodies of inverted rules
are also built in the postorder manner, re
ecting the predicate-argument structure of the head semantic
form. The semantics constituent of inverted rules' bodies (the last body constituent of FI rules, created
according to Step 2 of the Normalization algorithm) represents3 the entire semantics of the rule head, and
not just the semantic core. Therefore, to use the regular dot movement operation to match the inverted
rule bodies against the chart entries, the latter should be in an appropriate format, namely, full semantics
constructs with �-envelopes around the semantic cores whenever applicable.

As an example, consider the logical form smoke(john) corresponding to a NL sentence \John smokes".
The feature structure fse2 of Section 3.2.4 represents a possible generation input in this case:

fse2 =

2
6666664

phrase

syn :

h
syn

cat :

�
s

�i
sem : 1

""
arg 1

pred :

�
smoke

�
arg1 : 5

�
john

�
##

str :

D
5 ; 1

E

3
7777775

Postorder decomposition of < fse2 sem > yields a sequence of two semantic primitives, namely, john and
smoke:

�
john

�" arg 1

pred :

�
smoke

�
arg1 :

�
john

�
#

Inverted rules I11 and I6 should apparently be the �rst applied in a bottom-up generation. The body of
I11 is readily applicable to the former FS which encodes the semantics of john. On the other hand, the body
of I6 is not uni�able with the latter FS, since it has a �-binder around the semantics of smoke, thus encoding
the expression �x:smoke(x). Therefore, to make the inverted rules applicable to the generation input, a
method is needed to map semantic cores (e.g., smoke in the above example) into full semantic expressions
(e.g., �x:smoke(x)). In the terms of the example, the chart item representing the predicate smoke should
contain the full semantic construct4: 2

664
�-bind

var : 5
�
john

�
rest :

""
arg 1

pred :

�
smoke

�
arg1 : 5

##
3
775

Semantics Knowledge Base (SKB)

Semantic primitives which comprise logical forms originate from the logical predicates (possibly 0-ary, as in
the case of scalar constants) of lexicon entries. To facilitate generation with inverted grammars, an additional
transformation is applied to GO apart from the inversion. Namely, the lexicon and the Connective Registry
of GO are processed to create a so-called Semantics Knowledge Base (SKB). An SKB item corresponding to
a lexicon entry \word"! H (or a CR entry H) is a feature structure fs such that fs =< H sem >. In other
words, SKB stores entire semantics of lexicon (Connective Registry) entries. The notion of the semantic
core is also applicable to SKB items, so that the semantic core of fs is < fs rest� >=< H sem rest� >.

The SKB is supplied to the generator as a part of the inverted grammar.

3The Normalization algorithm makes the semantics constituent of a Functor-Introducing rule reentrant with the entire
semantics of the rule's head.

4The feature structure shown is ostensibly anomalous since its �-variable is already instantiated to [john]. This is due to
the uni�cation performed between < fse

2
sem > and the corresponding SKB entry, when retrieving the semantic expression

�x:smoke(x) (see below).

50

Initialization with SKB entries

As explained above, the chart has to be initialized with full semantics constructs rather than with the
immediate elements of L (the sequence of semantic primitives resulting from
attening the given logical
form). To this end, the generation algorithm consults the SKB and associates each li with a set of SKB
entries Ki = fKi1 ; : : : ;Kiqg, such that for each Kip its semantic core (denoted SC(Kip)) is uni�able with
li. The case when more than one SKB item corresponds to a particular element li (i.e., q > 1) occurs when
the input grammar contains synonyms (di�erent words having similar semantics).

During initialization, a set of chart items of the form [i;K 0

ip
; i+ 1;Comp] is created for each element li

of L, such that Kip 2 Ki and K
0

ip
is Kip as changed upon the uni�cation of SC(Kip) and li in the context of

Kip . This step actually corresponds to the notion of scanning in chart parsing. Note that all the elements
of the Ki set correspond to the same part of the input semantics (li), therefore they all enter the same chart
cell (i; i+ 1). This way, the scanning phase �lls the chart diagonal with the elements of input.

From this point, generation proceeds in exactly the same way as chart parsing. The initialization step
creates prediction items for grammar rules. Then the algorithm proceeds to the generation phase per se,
which invokes regular chart operations of dot movement and completion. The aim of this phase is to combine
items using inverted grammar rules, until a new item is created which spans the entire semantics input, thus
producing a phrase corresponding to the given logical form f .

4.1.4 Verbalization

As mentioned in Chapter 3 (see Section 3.2.2 and Section 3.3), feature structures of GN and GI rules are
endowed with a dedicated feature str which traces the order of constituents in corresponding GO rules. This
is actually the order in which NL words are combined to form phrases, and it is this order that should
be reconstructed during generation. According to Steps 1a and 4b of the normalization algorithm, the str
feature encodes ordered sequences of semantic primitives, each corresponding to the semantic core of some
lexical item. A phrase spanned by the semantics of a feature structure can be produced by analyzing the
value of its str feature, retrieving the respective words from the lexicon and concatenating them.

If generation terminates, it ends up with a (possibly empty) set of FSs, such that for each feature structure
F 0 its semantics is at least as speci�c as the input logical form f (< F 0 sem > w f). Since F 0 has been
built using the rules of GI and according to the Inversion algorithm, < F 0 str > encodes the words of the
generated phrase w. For notational convenience, let us denote < F 0 str >= f 01 : : : f

0

t , where f
0

i are semantic
primitives, which constitute semantic cores of lexicon entries. To map the elements of < F 0 str > into NL
words, the generator again consults the SKB. For each f 0i an SKB item is located such that its semantic
core subsumes f 0i . Then the word is retrieved from the lexicon entry, which served the prototype for this
SKB item. The resultant words are concatenated in the order induced by the elements of < F 0 str >. If the
lexicon contains synonyms, several SKB items (and, therefore, several words) may correspond to the same
f 0i . In such a case, several phrases (actually, paraphrases5) will be created for F 0, with di�erent words in
the i � th position. It is obvious that there may be more than one position in the resultant phrase where
synonymic words exist, thus leading to numerous paraphrases.

The case when generation yields several feature structures represents structural ambiguity; in such a case
each resultant FS corresponds to a di�erent generation tree.

4.2 The generation algorithm

4.2.1 Terminology

Scalar FS f is a scalar FS if it only has a type but no features. The fact that a FS f is scalar is denoted
by scalar(f).

Empty MRS A MRS having an empty set of nodes is an empty MRS, denoted with �.

5Paraphrases are di�erent NL expressions with the same meaning.

51

4.2.2 The algorithm

In what follows we describe a bottom-up chart generation algorithm.
Let GI be the input (inverted) grammar, and F be the feature structure which encodes the desired

meaning.

0. Auxiliary definitions

I := ;; /* the chart */

L := "; /* a list to store FSs obtained from
attening the given logical form */

n := 0; /* the number of of semantic primitives in the given logical form */

/* Procedure
atten assumes its parameter to be a feature structure, which represents some logical
form and conforms to the assumptions of Section 3.2. The procedure decomposes the given FS into a
sequence of semantic primitives along the predicate-argument structure. */

procedure
atten(fs)

(a) If scalar(fs) and fs is not a quanit�ed variable, then L[n] := fs; n := n+ 1;

(b) Else if

fs =

�
�-bind

var : 1
�
sem

�
rest : [C0]

�

then
atten(C0);

(c) Else if

fs =

2
64
arg k
pred : [C0]
arg1 : [C1]

.

.

.
argk : [Ck]

3
75

then

i. For i := 1 to k

atten(Ci);

ii. L[n] := fs; n := n+ 1;

(d) Otherwise, fs is not a predicate-argument structure; abort.

end /* procedure
atten */

1. Chart initialization

(a) [Flattening]

Execute
atten(< F sem >)

(b) [Scanning]

For i := 0 to n� 1

� For every K 2 SKB
s.t. SC(K) is the semantic core of K and SC(K) t L[i] 6= >
I := I [[i;K 0; i+ 1;Comp];
where K 0 is K as changed upon the uni�cation of SC(K) and L[i] in the context of K.

(c) [Prediction]

For i := 0 to n� 1
I := I [[i; �; i;Act];

2. Chart generation proper

Perform the following operations in any order, until quiescence (i.e., until no new items can be added
to I anymore):

52

(a) Dot movement
If

� 9r = (A1 : : : Am) Am+1) 2 GI ;m > 0;

� 9l < m;

� 9� 2 I : � = [i�; B�
1 : : : B

�
l ; j

�;Act];

� 9� 2 I : � = [i�; B� ; j� ;Comp]; j� = i�;

then

� A0

1 : : : A
0

l := (A1 : : : Al) tr (B
�
1 : : : B

�
l),

where tr designates uni�cation in the context of r, resulting in r0 = (A0

1 : : : A
0

m) A0

m+1);

� A00

l+1 := A0

l+1 tr0 B
� ;

� I := I [[i�; A00

1 : : : A
00

l+1; j
� ;Act];

(b) Completion
If

� 9r = (A1 : : : Am) Am+1) 2 GI ;m > 0;

� 9� 2 I : � = [i�; B�
1 : : : B

�
m; j

�;Act];

then

� A0

1 : : : A
0

m := (A1 : : : Am) tr (B�
1 : : : B

�
m),

where tr designates uni�cation in the context of r, resulting in r0 = (A0

1 : : : A
0

m) A0

m+1);

� I := I [[i�; A0

m+1; j
�;Comp];

3. Verbalization

For every F 0 such that [0; F 0; n;Comp] 2 I
/* print paraphrases with the desired meaning */

(a) Let < F 0 str >= f 01 : : : f
0

t

(b) For i := 1 to t

� For every K 2 SKB
s.t. SC(K) is the semantic core of K, SC(K) t f 0i 6= > and
lex = (\word"! H) is the lexicon entry such that K =< H sem >:
/* print (a synonym of) the i-th word of the generated phrase */
print(\word");

4.3 Sample generation

To exemplify the Generation algorithm we show a sample chart generation with the grammar Ge
I . The input

to the generator is the logical form mod(smoke(john), today), encoded in feature structures as

F =

2
666666664

phrase

syn :

h
syn

cat :

�
s

�i

sem :

2
66664

arg 2

pred :

�
mod

�
arg1 :

"
arg 1

pred :

�
smoke

�
arg1 :

�
john

�
#

arg2 :

�
today

�

3
77775

3
777777775

(4.1)

For the sake of compactness we only show creation of items that are required for the generation being
demonstrated. During the actual generation process a number of unnecessary items are created as a by-
product { those are disregarded here. We also do not show prediction items as they are numerous and trivial
in their structure.

53

A note is appropriate about the way chart items are displayed. Item nuclei are MRSs and may hence
have reentrancies among their parts. It should be noted however that such reentrancies (as well as the
corresponding tags) are purely local, and nothing can be shared between the nuclei of two distinct items.
Therefore, the use of identical reentrancy tags in di�erent items only serves expository purposes and does
not imply shared substructures.

4.3.1 Chart initialization

Flattening

The following sequence of semantic primitives results from
attening < F sem > (n = 4):

L =

*
[john] ;

"
arg 1

pred :

�
smoke

�
arg1 :

�
john

�
#
; [today] ;

2
66664

arg 2

pred :

�
mod

�
arg1 :

"
arg 1

pred :

�
smoke

�
arg1 :

�
john

�
#

arg2 :

�
today

�

3
77775
+

(4.2)

Scanning

During the scanning phase each element li of L (4.2) is matched by an SKB entry whose semantic core is
uni�able with it. The uni�cations are then performed, and the results are used to create the following chart
initialization items:

[0; [john]; 1;Comp] (4.3)

[1;

2
664
�-bind

var : 5
�
john

�
rest :

""
arg 1

pred :

�
smoke

�
arg1 : 5

##
3
775; 2;Comp] (4.4)

[2; [today]; 3;Comp] (4.5)

[3;

2
66666664

�-bind

var : 5
�
john

�

rest :

2
66664

2
66664

arg 2

pred :

�
mod

�
arg1 :

"
arg 1

pred :

�
smoke

�
arg1 : 5

#
arg2 :

�
today

�

3
77775

3
77775

3
77777775
; 4;Comp] (4.6)

4.3.2 Chart generation

The chart generation shown here can be seen as the reverse of the derivation starting from the same input.
Compare the generation below with the sample derivation of Section 3.5.4, which also starts from the feature
structure F given by (4.1) above.

Dot movement expands the prediction item [0; �; 0;Act] with initialization item (4.3) using rule I11:

[0; [john]; 1;Act] (4.7)

Completion uses rule I11 to convert item (4.7) into

54

[0;

2
666664

phrase

syn :

h
syn

cat :

�
np

�i
sem : 1

�
john

�
str : < 1 >

args :

h
args

larg :

�
e list

�i

3
777775; 1;Comp] (4.8)

Dot movement and completion are applied in a similar way to item (4.5) using rule I14, resulting in the
item

[2;

2
666664

phrase

syn :

h
syn

cat :

�
advp

�i
sem : 1

�
today

�
str : < 1 >

args :

h
args

larg :

�
e list

�i

3
777775; 3;Comp] (4.9)

Rule I7 and the prediction item [0; �; 0;Act] are used to convert the complete item (4.8) to an active
one. Then dot movement matches the resulting item with the �rst body constituent of the rule. Another
dot movement matches item (4.4) with the second body constituent (denoted by the tag 17 in the rule),
instantiating the semantics of the rule head at the same time. A subsequent completion operation creates
the following item:

[0;

2
66666666666666666666664

phrase

syn :

h
syn

cat :

�
vi

�i

sem :

2
664

�-bind

var : 5
�
john

�
rest : 6

"
arg 1

pred :

�
smoke

�
arg1 : 5

#
3
775

str : < 6 >

args :

2
666666664

args

larg :

2
66666664

ne list

hd :

2
66664

phrase

syn :

h
syn

cat :

�
np

�i
sem : 5

str : < 5 >

args :

�
args
larg : [e list]

�

3
77775

tl :

�
e list

�

3
77777775

3
777777775

3
77777777777777777777775

; 2;Comp] (4.10)

The prediction item [0; �; 0;Act] is used again, now in conjunction with rule I2, to convert the complete
item (4.10) to an active one. The resultant item is matched against the �rst body constituent of the rule,
while the values of the tags 5 and 6 in the rule are uni�ed with their namesakes in chart item. Two
additional dot movements unify items (4.9) and (4.6) with the remaining body constituents. Finally, a
completion operation creates the following item:

[0;

2
66666666666664

phrase

syn :

h
syn

cat :

�
s

�i

sem :

2
66664

arg 2

pred :

�
mod

�
arg1 : 6

"
arg 1

pred :

�
smoke

�
arg1 : 5

�
john

�
#

arg2 : 7
�
today

�

3
77775

str : < 5 ; 6 ; 7 >

args :

h
args

larg :

�
e list

�i

3
77777777777775
; 4;Comp] (4.11)

55

The semantics of item (4.11) subsumes the entire input, therefore the sample generation terminates
successfully.

4.3.3 Verbalization

The str feature of the generation result (the nucleus of item (4.11)) lists the following three semantic primi-
tives: *�

john

�
;

"
arg 1

pred :

�
smoke

�
arg1 :

�
john

�
#
;

�
today

�+

Consulting the SKB shows that these semantic primitives correspond to lexicon entries O8, O11 and O14,
respectively. The words de�ned by these entries have no synonyms, therefore the generation yields a single
phrase \John smokes today".

Clearly, if the generated sentence is parsed w.r.t. Ge
O resulting in a feature structure F 0, then the value

< F 0 sem > is exactly the logical form < F sem > which served the input for the sample generation above.

4.3.4 Generation of partial phrases

Let us consider a slightly di�erent generation scenario from the same input (4.1). At the very end, instead
of applying rule I2 to create item (4.11), the new scenario applies rule I4 to items (4.10), (4.9) and (4.6),
and produces the following item:

[0;

2
6666666666666666666666666664

phrase

syn :

h
syn

cat :

�
vp

�i

sem :

2
66666664

�-bind

var : 5
�
john

�

rest :

2
66664

arg 2

pred :

�
mod

�
arg1 : 6

"
arg 1

pred :

�
smoke

�
arg1 : 5

#

arg2 : 7
�
today

�

3
77775

3
77777775

str : < 6 ; 7 >

args :

2
666666664

args

larg :

2
66666664

ne list

hd :

2
66664

phrase

syn :

h
syn

cat :

�
np

�i
sem : 5

str : < 5 >

args :

�
args
larg : [e list]

�

3
77775

tl :

�
e list

�

3
77777775

3
777777775

3
7777777777777777777777777775

; 4;Comp] (4.12)

The resultant item (4.12) obviously covers the entire input (4.1), and therefore constitutes a legitimate
generation result. On the other hand its str feature encodes only the partial phrase \smokes today", since the
NP representing \John" still remains on the argument list and does not contribute to the generated phrase.
Observe also that the syntactic category of (4.12) is V P , which is di�erent from that of the generation input
(4.1) | < F syn cat >= S.

4.4 An abstract machine for chart generation

This section describes an Abstract Machine which implements the chart generation algorithm of Section 4.2.
In what follows we only discuss the extensions to Amalia which were necessary to facilitate generation.

56

As mentioned above (Section 4.1.1), the main di�erences between parsing and generation in Amalia lie
in chart initialization and interpretation of the �nal results. To this end, the control module of Amalia was
augmented to perform the correct action depending on the speci�c task (parsing/generation) at hand.

4.4.1 Augmentation of the Control Module

In the case of generation, the AM program is obtained by inverting and then compiling the given grammar.
The input logical form which gives the desired meaning makes the query, which is also compiled to the
Abstract Machine instructions. Similar to parsing, the instructions resulting from query processing are the
�rst to be executed on the chart (this phase in fact performs chart initialization). Then the program is
executed, to perform chart generation per se. Finally, a grammar-independent routine is invoked to actually
build the generated phrase, which is encoded in chart items (one or more, if any) spanning the entire input.

Grammar compilation

The supplied grammar is normalized and inverted according to the respective algorithms of Sections 3.4.7 and
3.5.2. The grammar is then compiled into an Abstract Machine program using exactly the same compilation
scheme as for parsing. The lexicon and the Connective Registry are then converted into the Semantic
Knowledge Base (SKB), by extracting the < H sem > substructure of each lexicon entry of the form
\word"! H or a CR entry H (see Section 4.1.3).

The compiler passes to the generator some of the symbol tables it has built. In particular, it passes type
and feature lists, an encoding of the type hierarchy, and type uni�cation information.

Chart initialization (scanning)

To perform chart initialization, the semantics f of the given query � (f =< � sem >) is �rst
attened into
a sequence L of semantic primitives (see procedure
atten of the Generation algorithm, Section 4.2). Then
for each element li of L the SKB entries Ki = fKi1 ; : : : ;Kiqg are collected whose semantic core is uni�able
with li. Uni�cations are performed, and the resultant set of feature structures K 0

i = fK 0

i1
; : : : ;K 0

iq
g are used

to initialize the chart.
It is not su�cient to only check subsumption between the elements of L and the SKB entries for the

following reason. The given logical form f may contain additional information compared with that found
in the original grammar lexicon (and, consequently, in the SKB). If parts of the query are not uni�ed with
the SKB, then such information is irretrievably lost, and cannot a�ect (constrain) the generation process
despite the fact it was supplied in the input. Uni�cation with parts of the query adds to the SKB entries any
information not found in the respective lexicon entries but present in the query. It should be emphasized that
the uni�cation in this phase is performed on feature structures, and no use is made of the chart whatsoever.

To initialize the chart, the feature structures resulting from the uni�cation above have to be compiled into
the abstract machine code. This necessitates to perform compilation during generation, using the symbol
tables prepared while compiling the grammar. The outcome of the compilation are functions in the AM
instruction language, which need to be executed on the chart to initialize it. For each li, the functions
corresponding to K 0

i = fK 0

i1
; : : : ;K 0

iq
g are invoked on the same chart cell (namely, the cell (i; i + 1) which

represents li).
At the end of this phase, the chart is initialized for the entire query, and the generator proceeds to

executing the program.

Chart processing

Chart generation is performed by executing the program (i.e., the inverted grammar compiled into AM
instructions) on the chart initialized with the query. The control module of the abstract machine implements
the chart processing algorithm (which realizes the dot movement and completion operations) and invokes
the program in exactly the same way as for parsing. During this phase there is no notion of the speci�c task
(parsing or generation) being carried out.

57

Interpreting the results of chart generation (verbalization)

A successful generation ends up with a non-empty set of feature structures, whose str feature encodes the
generated phrase. What remains to be done is to convert this encoding into sequences of NL words.

According to the grammar inversion procedure (Chapter 3), the str feature encodes lists of semantic prim-
itives, represented with feature structures. It is therefore necessary to decompose such lists into sequences
of elements, and to map the resulting elements into words. Should several synonymic words correspond to
the same semantic primitive, all of them are produced in the output in the respective position. Currently,
Amalia uses braces to denote such alternative words, e.g., \John floves, likesg Mary passionately".

To facilitate further processing, each resultant feature structure is converted from its AM heap encoding
to a regular representation used during grammar compilation. This is performed so that subsumption tests
with SKB entries can be performed without the use of the chart.

For each feature structure, the value of its str feature is retrieved, and then
attened6 into a linear
sequence of semantic primitives. Then the SKB is consulted for the second time during generation, and for
each semantic primitive all the SKB entries are found whose semantic core subsumes (i.e., is more general
than) this primitive. This way the generated phrase may be expressed with natural language words, since
each SKB entry corresponds to a lexicon item of the original grammar.

4.4.2 Application

The above extensions to the Abstract Machine for Parsing have been implemented, and merged into a single
application with the original Amalia. Both processing directions share the grammar compilation and chart
processing modules, as well as the common graphical user interface. When invoked in the parsing mode,
the program compiles the given grammar and parses queries (NL phrases) with respect to it. When invoked
in the generation mode, the extended control module inverts the input grammar prior to compilation, and
then performs generation along the above guidelines. In the latter case queries are supplied in an auxiliary
�le, encoded in ale notation for feature structures.

The software implementation of the generation extensions to Amalia is outlined in the next chapter.

6Observe that according to Section 3.4.6, values of the str feature are tree-like structures encoded in the usual linked list
notation.

58

Chapter 5

Software Implementation

This chapter describes the implementation of Amalia. Since the implementation of the basic Amalia
architecture as well as the chart mechanism are detailed elsewhere (Wintner, 1997; Wintner, Gabrilovich,
and Francez, 1997a), we mainly focus the discussion below on the generation extensions. The overview of
Amalia and its functionality is given only brie
y, for the sake of completeness of the presentation.

Amalia is implemented in the C programming language, complying to the ANSI-C requirements
(Kernighan and Ritchie, 1988). The lex and yacc tools (Aho, Sethi, and Ullman, 1986) were used to im-
plement the input acquisition module, and the Tcl/Tk toolkit (Ousterhout, 1994) was used to build the
graphical user interface. The application is compatible with a variety of platforms, such as Sun and Sili-
con Graphics workstations running UNIX operating system, as well as IBM PC running Windows'95

and LINUX. There are two versions of Amalia : an interactive, user-friendly program with a GUI, and
a non-interactive but more e�cient version which can be used for batch processing. The former program
is ideally suited for interactive grammar design and development, as it allows the user to debug grammars
by tracing rule applications step-by-step, and by examining the internal machine state at any step. Since
Amalia facilitates both parsing and generation, the interactive version can be viewed as an environment for
developing reversible grammars.

Both versions of Amalia can operate in two modes: parsing and generation.

1. In the case of parsing, an input consists of a natural language grammar G (encoded in a subset of ale
speci�cation language (Carpenter, 1992a)) and a phrase w to be parsed (given as a sequence of natural
language words). The grammar is compiled into a program which consists of AM instructions. Then
lexical lookup is performed on the given phrase by associating the input words with (one or more)
lexicon entries of the grammar. The resultant sequence of feature structures is also compiled to the
machine code, thus forming the query.

Then the control module of the abstract machine takes over. Its algorithm realizes chart parsing by
repeatedly applying the parsing step operator TG;w as de�ned in (Wintner, 1997, p. 32), until its least
�x-point is reached (if the process terminates at all). To this end the query is �rst executed to initialize
the chart, performing the scanning step of chart parsing. The control module makes use of the program
to create prediction items and handle the case of "-rules, and then to e�ect the chart operations of dot
movement and completion. If the computation is terminating, then in case of a successful parsing the
chart contains one or more items which span the entire input | these items contain feature structures
which represent the analysis results. If the parsing is unsuccessful the chart contains no such items.

2. In the case of generation, an input consists of a NL grammar G and a feature structure � (both
encoded in the subset of ale speci�cation language). The semantics of the given feature structure
(i.e., f =< � sem >) encodes a logical form which de�nes a meaning to generate. The generator then
has to create one or more phrases in the language of G so that they possess the desired meaning given
as input.

59

In the light of the previous discussion (see Chapters 3 and 4) the given grammar is inverted into a form
GI which is more suitable for e�ective generation. The inverted grammar is then compiled into machine
code in exactly the same way as for parsing. The logical form f is decomposed into a linear sequence
of semantic primitives, which upon an appropriate lexical lookup (consulting the SKB) becomes the
generation query.

From now on the control module of Amalia executes the same chart algorithm as in the case of parsing
(this can be viewed as \parsing" the given logical form according to the inverted grammar). If the
computation terminates successfully, the chart contains one or more feature structures which span
(subsume) the entire semantic input. What remains to be done in order to present the generation
results in a familiar form, is to perform the verbalization step. This step extracts the value of the str
feature of each resulting feature structure, and performs a variant of lexical lookup to convert it to
natural language words.

Amalia's generation module operates in accordance with the above guidelines. In what follows, Section
5.1.1 outlines the process of generation and discusses several features of the application. Sections 5.1.2 and
5.1.3 cover more technical aspects of the implementation of grammar compilation for generation and chart
generation, respectively.

5.1 Generation additions to Amalia

5.1.1 Overview

As follows from the above description, generation extensions are introduced in Amalia at two levels, namely
in the grammar compiler and the interpreter of AM instructions. Whenever possible, the regular data

ow of parsing is obeyed during generation as well, while in the rest of the cases operations speci�c to
generation are performed either in addition to or instead of those speci�c to parsing.

Grammar compilation for generation

During compilation for generation, an additional transformation is performed on the input grammar G,
immediately upon grammar acquisition but prior to compilation. The input grammar is normalized and
then inverted using the respective algorithms of Chapter 3. For the grammar to be invertible it should
comply with the restrictions listed in Section 3.2. Since Amalia automatically performs type inference
during input acquisition, the auxiliary features str and args only have to be included in the type hierarchy,
and does not need to be explicitly used in the grammar rules or lexicon entries. After partial descriptions
are expanded, these features may be used by the normalization and inversion procedures.

The inverted grammar is represented using Multi-Rooted Structures in exactly the same way as the
original grammar. Therefore it can be immediately compiled into AM instructions, using the compilation
procedure for parsing grammars. Thus both original (parsing) grammars and inverted grammars are compiled
using the same AM instruction set, to be then executed by the same interpreter.

As in the case of parsing, the compiler passes to the interpreter a number of symbol tables. Namely, type
and feature lists, an encoding of the type hierarchy and type uni�cation information are passed.

Lexicon processing The lexicon of the given grammar is also processed di�erently for parsing and gener-
ation. If G is compiled for parsing, the lexicon is compiled into AM instructions together with the grammar.
For each word in the lexicon the compiler creates a function, which can be executed on the chart during
the scanning phase, to initialize it appropriately if this word occurs in input. In addition to that, a spe-
cial \words" �le is created, which associates each word with the label of the corresponding function in the
program code.

If G is compiled for generation, the lexicon needs to be disambiguated prior to grammar compilation. To
this end the lexicon is searched for \ambiguous" entries, i.e., entries representing homonyms (or, more pre-
cisely, homographs). Such entries associate a single spelling with several disjunctive feature structures which

60

represent di�erent meanings. Since generation is \meaning-oriented", such sets of FSs have to be decomposed
into several simple lexicon entries, where each spelling is associated with a single feature structure.

During grammar inversion the lexicon induces a set of (lexicon-derived) Functor-Introducing rules (see
Step 4 of the Normalization algorithm in Section 3.4.7). After the grammar is inverted, the lexicon and the
Connective Registry (if any is supplied with the grammar) are transformed into the Semantic Knowledge
Base. To this end, each lexicon entry of the form \word"! H is converted into an SKB item \word"! fs,
where fs =< H sem >, and each CR entry H is converted into < H sem > (cf. Section 4.1.3). It should
be noted that for the reasons explained in Section 4.4.1, in the generation mode the lexicon is not compiled
along with the grammar. Instead, individual SKB entries which correspond to parts of the given query are
compiled immediately prior to the generation, and are then executed to initialize the chart according to the
input.

The generation cycle

The generation cycle performs generation from a program and a query it receives as input. The cycle starts
with initialization of the abstract machine by building its main data structures: the heap, the chart, general
purpose and special purpose registers, the trail and the code area. Then the symbol tables prepared by the
compiler (including the SKB �le) are read, followed by the acquisition of the program, when the program is
loaded into the code area.

Chart initialization The query has to be executed before the program, hence the next step is to process
the query. First, the query �le is parsed in order to build the query representation as a feature structure.
According to Step 1a of the Generation algorithm (Section 4.2) the semantics of the query is
attened into
a sequence of semantic primitives L = l0 : : : ln�1. Then for each li, all the SKB entries Ki = fKi1 ; : : : ;Kiqg
whose sematic core subsumes li are collected. For each Kij , its sematic core is then uni�ed with li, and
the outcome of the uni�cation (denoted K 0

ij
) induces a chart initialization item. These items are compiled

similarly to the way lexicon entries are compiled for parsing, using the symbol tables built during grammar
compilation. The compiled code for all K 0

ij
is executed on the chart cell which corresponds to li. This way

all the SKB entries that represent words whose meaning subsumes that of li enter the corresponding chart
cell, in accordance with Step 1b of the Generation algorithm.

Compilation of the SKB Compilation of SKB items for generation is slightly di�erent from the
corresponding compilation of lexicon entries for parsing. In the case of parsing, the lexicon associates each
word with one or more feature structures which together form a (disjunctive) lexicon entry. Thus during
scanning all the feature structures corresponding to a given word are available immediately. Therefore
the chart cell corresponding to a certain word in the input is initialized with those and only those feature
structures which comprose the respective lexicon entry. When the compiled code of a lexicon entry is
executed on a chart cell, the chart control module may proceed to the next cell.

In contrast, in the case of generation each semantic primitive may correspond to a number of SKB entries
whose semantic cores subsume it. These do not necessarily come together, and in the general case may be
scattered all over the SKB (for example, SKB entries induced by ambiguous words in the original lexicon).
Consequently, it is unclear how many SKB items will be used to initialize a chart cell until all the SKB is
scanned. To this end, each individual SKB item is compiled with a provision that another one will enter
the same chart cell. This is realized by compiling each SKB item with 'same word' as the last instruction.
When all the SKB items corresponding to a given semantic primitives have been collected and compiled,
the 'proceed' instructions is created explicitly. This way when initialization of a chart cell is complete, the
control module automatically proceeds to the next cell.

Chart generation After the chart is initialized, the chart engine assumes control and performs chart
generation per se, thus e�ecting �rst Step 1c, and then Step 2 of the Generation algorithm. To this end the
program (which is already loaded to the code area) is invoked, by exactly the same mechanism and in the
same way as for parsing.

61

Verbalization If the program terminates, what remains to be done is to interpret the chart results (if
any) according to the meaning in the generation mode, and output the phrase(s) generated. During the
chart generation all the feature structures are built in the main memory of Amalia (namely, on the heap).
From the practical point of view, it is more convenient to perform verbalization on feature structures in their
regular representation (used during grammar compilation), instead of on their heap representation. The
reason for this is that verbalization needs to perform subsumption check and list processing operations, and
the corresponding functions have already been used in the compiler.

To this end the �nal state of the heap is examined, collecting the items which contain feature structures
that span the entire input. Each such FS is then converted to a convenient representation, and the value of
its str feature is extracted. The str list is then decomposed from its tree-like structure into a linear sequence
of semantic primitives. For each component of the str list, the SKB is scanned for entries whose semantic
core subsumes this component, and the corresponding words are produced. If there are several SKB entries
which match the same component, the corresponding words are pooled and are denoted with braces in the
output.

5.1.2 Functional breakdown of grammar compilation for generation

Data structures

The main data structures used during compilation are those representing grammars and machine instructions.
Each grammar rule is represented as a Multi-Rooted Structure whose distinguished �rst root corresponds to
the rule head. Lexicon entries are also embedded into MRSs, with the only distinction that all roots have the
same status, and correspond to the individual feature structures of the disjunctive lexicon entry. Connective
Registry entries are represented as MRS of length 1, each introducing some semantic primitive. In general,
there is no notion of a \stand-alone" feature structure which does not reside inside some \host" MRS.

Grammars are compiled into instructions of the AM language. Each instruction has an operation code
which identi�es this instruction, an optional label, up to three arguments and a string comment, which
makes it easier for humans to read the AM code.

Main functions and data
ow

1. First, the grammar speci�cation �le (in ale format) is parsed using a YACC-based parser (function
'yyparse'). Various grammar-dependent symbol tables, such as type and feature lists, type uni�cation
table and the type hierarchy are built during grammar acquisition. While building the type hierarchy
the parser searches for the types and features prescribed by the minimum required type hierarchy (see
Section 3.2.3). These types and features are used by numerous functions throughout the system, and
for that reason their identi�ers are made available globally (for example, 'sem type', 'args type',
'atomic type'; 'cat feat', 'str feat', 'pred feat').

2. "-rules are removed from the grammar using function 'eliminate empty cats'.

3. After grammar acquisition is complete, function 'separate lex ambiguity' is invoked to decompose
ambiguous lexical entries into several MRSs of length 1.

4. The grammar is then inverted using function invert grammar.

(a) Function 'append str' e�ects Step 1a of the Normalization algorithm and sets the str feature
values in grammar rules.

(b) Function 'create lex str' performs a similar operation for lexicon entries, to the e�ect of Step
4b ibid.

(c) Function 'normalize' performs grammar normalization, using (self-explanatory) functions
'normalize grammar rules' and 'normalize lexicon entries'.

i. This routine uses function 'chain rule' to obtain a boolean value which is true for chain
rules and false otherwise (Step 1b).

62

ii. According to the classi�cation results, functions 'norm FI rule', 'norm AF rule' and
'norm LEX rule' are invoked, to the e�ect of Steps 2, 3 and 4, respectively.

iii. The following auxiliary functions are used during normalization:

� Function 'set non sem head argument flow' sets the argument
ow in all the body
constituents of FI or AF rule, except the semantic head (Steps 2a and 3a).

� Function'set rule head argument flow' sets the argument
ow in the head of FI rules.
(Step 2a).

� Function 'convert body sem head args' converts the body constituents of AF rules into
arguments of the semantic head (Step 3a).

� Function 'get sem core' returns a pointer to the semantic core of a given FS.

� A boolean function 'dp reentrant' checks whether the designated paths in two given
feature structures (inside a speci�ed MRS) are reentrant.

� Function 'restructure rule body' restructures bodies of FI rules to match the order
of arguments in the head logical form (Step 2a).

� Whenever a new rule is created (FI, AF or lexicon-derived), function 'add rule' is in-
voked to check if it shoulb be added to the grammar (this function is also used during
grammar inversion when new inverted rules are created). The function adds the rule to
the existing set of rules, if there is no rule more general than the new one. If there exists
a rule more speci�c than the new one, the former is replaced by the latter. If a more
general rule exists, the new rule is discarded.

(d) Function 'invert' performs grammar inversion:

i. Function 'compute rule chains' computes maximal chains of normalized rules, according
to Step 1 of the Inversion algorithm.

A. Function 'grow chains' implements Step 1b and computes all the chains which terminate
with the given FI rule. The function uses an auxiliary routine 'expand chain' which
expands a given chain with an additional AF rule. If the syntactic category of the (single)
body constituent of this AF rule is not preterminal, the corresponding link in the chain
is marked accordingly. In such a case the chain is later decomposed at this point as well
(i.e., an inverted rule is created from the part of the chain between this point and the FI
rule terminating the chain).

B. Then all the created chains are analyzed. If a chain is terminated with a lexicon-derived FI
rule, function 'flatten inv args' is used to
atten its body (Step 1(d)i). The
attened
body is subsequently restructured (Step 1(d)ii) with function 'restructure rule body'

(which was used during normalization to restructure bodies of the FI rules which are not
lexicon-derived). If the LD rule has an \argument" syntactic category and was combined
with other AF rules, a new chain is created which duplicates this rule (Step 1(d)iii). To
this end an auxiliary boolean function 'arg cat' is used to determine whether a given
category is an \argument" category.

ii. Function 'decompose chains' breaks down the chains into separate inverted rules (Step 2).
An auxiliary function 'create new rule' is used to build a new rule by extracting its head
and body from the MRS representing the chain. New inverted rules are added to the inverted
grammar using function 'add rule'.

(e) For the interpreter to operate correctly the grammar should be arranged so that unit rules (if
any) precede any other rules. To this end boolean function 'unit rule' is used to determine
whether a given rule is a unit rule.

5. Before the SKB is created by the compiler, the lexicon and the Connective Registry are processed to
replace each feature structure with the value of its sem feature (cf. Section 4.1.3).

63

6. Finally, the lexicon and the Connective Registry are merged, and the SKB is created using function
'create skb'. This function uses an auxiliary function 'print spec fs' which prints a given feature
structure in ale speci�cation language. The SKB is recorded in a �le to be used by the interpreter.

5.1.3 Functional breakdown of the generation cycle

Data structures

The main data structures used during the generation cycle are those used by the Amalia interpreter (see
(Wintner, 1997, Chapter 3)); these data structures were not a�ected by the generation additions to the
machine. In addition to that, the operations of SKB lookup and verbalization1 perform uni�cation and
subsumption checks on MRSs in the same representation as used during compilation (cf. Section 5.1.2).

Main functions and data
ow

1. The abstract machine is initialized using function 'initialize machine', which builds the main data
structures of the AM: the heap, the chart, general and special purpose registers, the trail and the code
area.

2. Function 'new program' reads the symbols tables prepared by the compiler
('read sym tables'), and then loads the program supplied in the speci�ed input �le into the code
area ('load program').

3. The query is supplied by the user in an additional �le (besides the one that contains the program),
encoded in ale speci�cation language. Function 'process query' decomposes the query and prepares
chart initialization items. These items are then compiled and executed on the chart.

(a) First, the query �le is parsed using the same parser that inputs grammar speci�cations during
compilation | function 'yyparse'). The outcome of this process is a MRS whose single root
contains a FS that represents the query.

(b) The query is scanned for vertices which represent quanti�ed variables, and those found are marked
accordingly (see Step 0a of the procedure
atten in the Generation algorithm, Section 4.2). This
step is performed by the function 'find quant vars'.

(c) The query is then
attened ('flatten query') into a sequence of semantic primitives (Step 1a of
the Generation algorithm). The function creates new roots in the MRS that contains the query,
with each root corresponding to some semantic primitive found during
attening. The mutual
order of the roots corresponds to the postorder traversal of the query.

(d) Function 'query init chart' performs the SKB lookup for the components of the query, compiles
the chart initialization items and executes them:

i. For each component of the query (represented by a root in the host MRS), all SKB entries
whose semantic core subsumes this component are collected. In the general case there may
be more than one SKB entry per component. The semantic core of each such SKB entry is
uni�ed with this component ('fs unify') in the context of the entire entry. The uni�cation
results are collected in the form of a (new) MRS, where each root corresponds to some SKB
entry as changed upon the uni�cation. All the MRSs corresponding to the components of the
query are assembled in an array ('query skb').

� In the above scheme uni�cation is performed each time between a component of the query
and the semantic core of a SKB entry. Observe that function 'fs unify' is de�ned to
unify two feature structures which reside in the same host MRS. To this end a dummy
MRS is created which contains two nodes corresponding to the two uni�cands. This is
achieved by function 'add one fs to mrs' which adds (copies) a single feature structure
of one MRS as a new root to another MRS.

1See Section 5.1.1.

64

ii. What remains to be done is to compile all the SKB entries which correspond to each com-
ponent of the query, ans execute them to initialize the chart. This is realized by function
'compile and execute query'.

A. This is performed by the same functions which compile the lexicon for parsing. Function
'gen lex equations' converts each SKB entry into a set of equations, and function
'gen instructions' generates the AM instructions.

B. Function 'add program instruction' loads the newly created machine functions into
the code area, and then function 'execute function' executes them.

C. After the query is executed, the program counter needs to be restored to the beginning
of the program using function 'set program counter'.

(e) This completes the scanning step of the chart generation (Step 1b of the Generation algorithm).

4. After initialization, the chart processing algorithm is invoked by function 'run program', which exe-
cutes the program created for the inverted grammar. This e�ects the process of chart generation by
�rst creating prediction items for the grammar rules (Step 1c), and then performing the operations of
dot movement and completion (Step 2).

5. Function 'print final results' displays the generation results (if any).

(a) Each complete edge which covers the entire input is retrieved from the chart, and the feature
structure it de�nes is built from the heap representation using function 'heap to fs'.

(b) Function 'gen result to words' creates a string of words spanned by the str feature of the given
FS:

i. The value of the str feature of the result encodes a sequence of semantic primitives in the
form of a tree-like structure. Function 'flatten tree'
attens this tree, and creates a linear
list of semantic primitives (Step 3 of the Generation algorithm). To this end the tree nodes
retrieved during
attening are organized as new roots of the host MRS.

ii. For each element of the
attened list all the SKB entries are collected whose semantic core
subsumes this element (the subsumption check is performed by function 'mrs less than').
The words corresponding to the selected SKB entries are retrieved, and together they comprise
the generated phrase (Step 3b). Whenever several SKB entries subsume a singe semantic
primitive, the corresponding words are pooled together and delimited with braces in the
output.

65

Chapter 6

Conclusions

The main purpose of this work was to apply the Abstract Machine approach to the problem of Natural
Language Generation. Given the Amalia abstract machine for parsing uni�cation grammars (Wintner,
1997), we enhanced it with generation capabilities.

To this end we de�ned a concept of chart generation, similar to the familiar chart parsing. This technique
allows the generator to systematically consume parts of the given logical form, and build natural language
phrases with corresponding meaning. Unlike previous works (Kay, 1996; Trujillo, 1997), we do not require

at semantics representation; instead, the input to the generator may comprise nested logical forms. In
order to process such complex forms and allow their systematical decomposition into meaning primitives,
we made use of an existing algorithm for grammar inversion (Samuelsson, 1995). The algorithm discerns
the predicate-argument structure of logical forms, and rebuilds parsing grammars to re
ect this structure,
making them inherently suitable for generation. Since Amalia works with grammars encoded in a TFS-
based formalism, we ported the grammar inversion algorithm (originally formulated for the DCG formalism)
accordingly.

We then extended the control structures of Amalia to facilitate chart generation. It should be observed
that the additions to Amalia were limited only to the control, while the instruction set of the machine
remained una�ected. The uni�ed Amalia performs parsing and generation in a largely uniform way, and
the chart processing core is totally independent of the actual processing direction. Extending Amalia
with the ability to perform generation resulted in an e�cient bidirectional system for Natural Language
Processing.

For a grammar to be invertible (and thus suitable for generation with Amalia) it must satisfy a number
of requirements. Among the stricter ones is the compositionality criterion, which requires that in every
grammar rule, the semantics of the head must be a predicate-argument structure of the semantics of (all
and only) the elements in the body. There are natural language constructs (e.g., expletives) which do not
satisfy the compositionality requirement, therefore a possible extension to this work would be to relax this
condition. Another assumption which is a potential candidate for relaxation is that currently chain rules
may have no more than one semantic head (and, analogously, that the non-chain rules may have only one
argument carrier).

There are a number of other limitations inherent to the grammar inversion procedure, and further research
on the topic may address these issues as well. For example, the way inverted rules are created from chains of
normalized rules (by taking the head of the �rst and the body of the last rule in a chain) does not necessarily
preserve goals (if any were speci�ed for the original rules comprising the chain). This occurs if goals are
associated with rules in the middle of the chain, since constituents of such rules are not necessarily explicitly
represented in the resultant inverted rules.

Also, it is unclear in the meanwhile how to adapt the proposed technique to generate partial phrases
rather than complete sentences. For instance, it is natural to expect the generator to produce the phrase
\loves Mary" (or \to love Mary") given the input �x:love(x; mary). Such cases are problematic, since the
chart generation algorithm currently requires all the arguments of a predicate to be explicitly available, in

66

order to generate from this predicate.
This work presents two grammars suitable for our generation algorithm: the running example grammar,

and the larger one which incorporates the principles of Montague semantics. Both grammars are quite small,
and are provided merely to justify the feasibility of the approach. Hence an immediate extension of this
project would be to design larger, \real" grammars, covering substantial fragments of the natural language.

67

Appendix A

The running example grammar

This Appendix contains the running example grammar and demonstrates sample generation with this gram-
mar. In what follows, Section A.1 presents the listing of the grammar. Section A.2 shows the normalized
and the inverted versions of the grammar, and Section A.3 contains two generation examples.

A.1 Listing of the grammar

%%

%

% File: Running example grammar

%

%

% Covers:

%

% 1) noun phrases

% 2) verb phrases (intransitive verbs)

% 3) modifiers - predicate adverbs

%

% Parses:

%

% 1) John smokes

% 2) John smokes today

%

%%

%%%********************** Type Hierarchy

%th

bot sub [sign, syn, syn_term, sem, args, list].

sign sub [phrase].

phrase sub [word] intro [syn:syn, sem:sem, args:args, str:list].

word sub [].

syn sub [] intro [cat:syn_term].

syn_term sub [s, np, vp, advp].

s sub [].

np sub [].

vp sub [vi].

vi sub [].

68

advp sub [].

sem sub [const, funct].

const sub [pn, adv].

pn sub [john].

john sub [].

adv sub [today].

today sub [].

funct sub [predic, atomic, quant].

predic sub [aux, verb].

aux sub [mod].

mod sub [].

verb sub [v_intrans].

v_intrans sub [smoke].

smoke sub [].

atomic sub[arg_1] intro [pred:sem].

arg_1 sub [arg_2] intro [arg1:sem].

arg_2 sub [] intro [arg2:sem].

quant sub [l_bind] intro [var:sem].

l_bind sub [] intro [rest:sem].

args sub [] intro [larg:list].

list sub [ne_list, e_list].

ne_list sub [] intro [hd:bot, tl:list].

e_list sub [].

%macros

%%%********************** Macros

lex(Cat, Sem) macro

(word, syn:(syn, cat:Cat),

sem:Sem).

cr(Sem) macro

(sem:Sem).

%grammar

%%%********************** Grammmar Rules

o_2 rule

%sem_head_2

(phrase, syn:(syn, cat:s),

sem:R6)

===>

cat>

(phrase, syn:(syn, cat:np),

sem:(R5, sem)),

cat> % head

(phrase, syn:(syn, cat:vp),

sem:(l_bind, (var:R5, rest:(R6, funct)))).

o_3 rule

%sem_head_1

69

(phrase, syn:(syn, cat:vp),

sem:(l_bind, (var:R5,

rest:(atomic, (pred:mod,

arg1:R6,

arg2:R7)))))

===>

cat> % head

(phrase, syn:(syn, cat:vp),

sem:(l_bind, (var:R5, rest:(R6, funct)))),

cat>

(phrase, syn:(syn, cat:advp),

sem:(R7, sem)).

%lexicon

%%%********************** Lexical Entries

% o_8: "John"

john --->

(@ lex(np, john)).

% o_11: "smokes"

% Lambda x. smoke(x)

smokes --->

(@ lex(vi,

(l_bind, (var:R5,

rest:(atomic, (pred:smoke,

arg1:R5)))))).

% o_14: "today"

today --->

(@ lex(advp, today)).

%connective_registry

%%%********************** Connective Registry Entries

% modifier

)-->

(@ cr((l_bind, (var:R5,

rest:(R1, atomic, (pred:mod,

arg1: (R6, funct),

arg2: R7)))))).

A.2 Normalization and inversion of the running example grammar

A.2.1 Normalized sample grammar

***** Printing normalized rules ... *****

***** Printing FI rules ... *****

70

***** Normalized FI rule - image of rule 1 ***** (rule N_3)

[55]phrase(

syn:[56]syn(

cat:[6]vp),

sem:[57]l_bind(

var:[92]sem,

rest:[50]arg_2(

pred:[41]mod,

arg1:[93]funct,

arg2:[132]sem)),

args:[58]args(

larg:[138]list),

str:[137]ne_list(

hd:[102]list,

tl:[136]ne_list(

hd:[134]list,

tl:[135]e_list)))

===>

[98]phrase(

syn:[99]syn(

cat:[66]vp),

sem:[100]l_bind(

var:[92],

rest:[93]),

args:[101]args(

larg:[138]),

str:[102]),

[130]phrase(

syn:[131]syn(

cat:[109]advp),

sem:[132],

args:[133]args(

larg:[122]e_list),

str:[134]),

[57]

> This rule has no goals.

***** Printing lexicon-derived FI rules ... *****

***** Normalized lexicon-derived FI rule -

image of lexicon-entry 0 ***** (rule N_8)

[0]word(

syn:[1]syn(

cat:[2]np),

sem:[3]pn,

args:[4]args(

larg:[5]list),

str:[8]ne_list(

hd:[3],

71

tl:[7]e_list))

===>

[4],

[3]

> This rule has no goals.

***** Normalized lexicon-derived FI rule -

image of lexicon-entry 1 ***** (rule N_11)

[0]word(

syn:[1]syn(

cat:[2]vi),

sem:[3]l_bind(

var:[4]sem,

rest:[5]arg_1(

pred:[6]v_intrans,

arg1:[4])),

args:[7]args(

larg:[8]list),

str:[11]ne_list(

hd:[5],

tl:[10]e_list))

===>

[7],

[3]

> This rule has no goals.

***** Normalized lexicon-derived FI rule -

image of lexicon-entry 2 ***** (rule N_14)

[0]word(

syn:[1]syn(

cat:[2]advp),

sem:[3]adv,

args:[4]args(

larg:[5]list),

str:[8]ne_list(

hd:[3],

tl:[7]e_list))

===>

[4],

[3]

> This rule has no goals.

***** Printing AF rules ... *****

***** Normalized AF rule - image of rule 0 ***** (rule N_2)

[26]phrase(

syn:[27]syn(

cat:[6]s),

sem:[97]funct,

72

args:[29]args(

larg:[19]list),

str:[109]ne_list(

hd:[63]list,

tl:[108]ne_list(

hd:[106]list,

tl:[107]e_list)))

===>

[102]phrase(

syn:[103]syn(

cat:[70]vp),

sem:[104]l_bind(

var:[96]sem,

rest:[97]),

args:[105]args(

larg:[110]ne_list(

hd:[59]phrase(

syn:[60]syn(

cat:[37]np),

sem:[96],

args:[62]args(

larg:[50]e_list),

str:[63]),

tl:[19])),

str:[106])

> This rule has no goals.

***** All normalized rule printed. *****

A.2.2 Inverted sample grammar

***** Printing inverted rules ... *****

***** Inverted rule - terminated with FI rule 0 ***** (rule I_2)

[0]phrase(

syn:[1]syn(

cat:[2]s),

sem:[3]arg_2(

pred:[4]mod,

arg1:[5]funct,

arg2:[6]sem),

args:[7]args(

larg:[8]e_list),

str:[9]ne_list(

hd:[10]list,

tl:[11]ne_list(

hd:[12]ne_list(

hd:[13]list,

tl:[14]ne_list(

hd:[15]list,

tl:[16]e_list)),

73

tl:[17]e_list)))

===>

[18]phrase(

syn:[19]syn(

cat:[20]vp),

sem:[21]l_bind(

var:[22]sem,

rest:[5]),

args:[23]args(

larg:[24]ne_list(

hd:[25]phrase(

syn:[26]syn(

cat:[27]np),

sem:[22],

args:[28]args(

larg:[29]e_list),

str:[10]),

tl:[8])),

str:[13]),

[30]phrase(

syn:[31]syn(

cat:[32]advp),

sem:[6],

args:[33]args(

larg:[34]e_list),

str:[15]),

[35]l_bind(

var:[22],

rest:[3])

> This rule has no goals.

***** Inverted rule - terminated with FI rule 0 ***** (rule I_4)

[0]phrase(

syn:[1]syn(

cat:[2]vp),

sem:[3]l_bind(

var:[4]sem,

rest:[5]arg_2(

pred:[6]mod,

arg1:[7]funct,

arg2:[8]sem)),

args:[9]args(

larg:[10]ne_list(

hd:[11]phrase(

syn:[12]syn(

cat:[13]np),

sem:[4],

args:[14]args(

larg:[15]e_list),

str:[16]list),

tl:[17]e_list)),

74

str:[18]ne_list(

hd:[19]list,

tl:[20]ne_list(

hd:[21]list,

tl:[22]e_list)))

===>

[23]phrase(

syn:[24]syn(

cat:[25]vp),

sem:[26]l_bind(

var:[4],

rest:[7]),

args:[27]args(

larg:[10]),

str:[19]),

[28]phrase(

syn:[29]syn(

cat:[30]advp),

sem:[8],

args:[31]args(

larg:[32]e_list),

str:[21]),

[3]

> This rule has no goals.

***** Inverted rule -

terminated with lexicon-derived FI rule 1 ***** (rule I_11)

[0]word(

syn:[1]syn(

cat:[2]np),

sem:[3]pn,

args:[4]args(

larg:[5]e_list),

str:[8]ne_list(

hd:[3],

tl:[7]e_list))

===>

[3]

> This rule has no goals.

***** Inverted rule -

terminated with lexicon-derived FI rule 2 ***** (rule I_6)

[0]phrase(

syn:[1]syn(

cat:[2]s),

sem:[3]arg_1(

pred:[4]v_intrans,

arg1:[5]sem),

args:[6]args(

larg:[7]e_list),

75

str:[8]ne_list(

hd:[9]list,

tl:[10]ne_list(

hd:[11]ne_list(

hd:[3],

tl:[12]e_list),

tl:[13]e_list)))

===>

[14]phrase(

syn:[15]syn(

cat:[16]np),

sem:[5],

args:[17]args(

larg:[18]e_list),

str:[9]),

[19]l_bind(

var:[5],

rest:[3])

> This rule has no goals.

***** Inverted rule -

terminated with lexicon-derived FI rule 2 ***** (rule I_7)

[0]word(

syn:[1]syn(

cat:[2]vi),

sem:[3]l_bind(

var:[4]sem,

rest:[5]arg_1(

pred:[6]v_intrans,

arg1:[4])),

args:[7]args(

larg:[8]ne_list(

hd:[9]phrase(

syn:[10]syn(

cat:[11]np),

sem:[4],

args:[12]args(

larg:[13]e_list),

str:[14]list),

tl:[15]e_list)),

str:[16]ne_list(

hd:[5],

tl:[17]e_list))

===>

[9],

[3]

> This rule has no goals.

***** Inverted rule -

terminated with lexicon-derived FI rule 3 ***** (rule I_14)

76

[0]word(

syn:[1]syn(

cat:[2]advp),

sem:[3]adv,

args:[4]args(

larg:[5]e_list),

str:[8]ne_list(

hd:[3],

tl:[7]e_list))

===>

[3]

> This rule has no goals.

***** All inverted rule printed. *****

A.2.3 Connective Registry

***** Printing Connective Registry ... *****

***** CR entry ***** (mod)

[39]l_bind(

var:[32]sem,

rest:[33]arg_2(

pred:[24]mod,

arg1:[22]funct,

arg2:[16]sem))

***** All CR entries printed. *****

A.2.4 Semantics Knowledge Base (SKB)

%skb

|-->

(john,0)

(R3,john).

|-->

(smokes,0)

(R3,l_bind,(

var:(R4,sem),

rest:(R5,arg_1,(

pred:(R6,smoke),

arg1:(R4))))).

|-->

(today,0)

(R3,today).

|-->

(_,0)

77

(R39,l_bind,(

var:(R32,sem),

rest:(R33,arg_2,(

pred:(R24,mod),

arg1:(R22,funct),

arg2:(R16,sem))))).

A.3 Generation examples

A.3.1 Example 1

Query

%query

%%%% john smokes

%%%% smoke(john)

>>>>

(phrase,(

syn:(syn,(

cat:s)),

sem:(atomic,(

pred:smoke,

arg1:(R1, john))))).

Generation results

Results:

Result number 1:

[0]phrase(

syn:[1]syn(

cat:[2]s),

sem:[3]arg_1(

pred:[4]smoke,

arg1:[5]john),

args:[6]args(

larg:[7]e_list),

str:[8]ne_list(

hd:[9]ne_list(

hd:[5],

tl:[10]e_list),

tl:[11]ne_list(

hd:[12]ne_list(

hd:[3],

tl:[13]e_list),

tl:[14]e_list)))

john smokes

Result number 2:

[0]word(

78

syn:[1]syn(

cat:[2]vi),

sem:[3]l_bind(

var:[4]john,

rest:[5]arg_1(

pred:[6]smoke,

arg1:[4])),

args:[7]args(

larg:[8]ne_list(

hd:[9]word(

syn:[10]syn(

cat:[11]np),

sem:[4],

args:[12]args(

larg:[13]e_list),

str:[14]ne_list(

hd:[4],

tl:[15]e_list)),

tl:[16]e_list)),

str:[17]ne_list(

hd:[5],

tl:[18]e_list))

smokes

A.3.2 Example 2

Query

%query

%%%% john smokes today

%%%% mod(smoke(john),today)

>>>>

(phrase,(

syn:(syn,(

cat:s)),

sem:(atomic,(

pred:mod,

arg1:(R5, atomic,(

pred:smoke,

arg1:(R1,john))),

arg2:(R6, today))))).

Generation results

Results:

Result number 1:

[0]phrase(

syn:[1]syn(

cat:[2]s),

sem:[3]arg_2(

79

pred:[4]mod,

arg1:[5]arg_1(

pred:[6]smoke,

arg1:[7]john),

arg2:[8]today),

args:[9]args(

larg:[10]e_list),

str:[11]ne_list(

hd:[12]ne_list(

hd:[7],

tl:[13]e_list),

tl:[14]ne_list(

hd:[15]ne_list(

hd:[16]ne_list(

hd:[5],

tl:[17]e_list),

tl:[18]ne_list(

hd:[19]ne_list(

hd:[8],

tl:[20]e_list),

tl:[21]e_list)),

tl:[22]e_list)))

john smokes today

Result number 2:

[0]phrase(

syn:[1]syn(

cat:[2]vp),

sem:[3]l_bind(

var:[4]john,

rest:[5]arg_2(

pred:[6]mod,

arg1:[7]arg_1(

pred:[8]smoke,

arg1:[4]),

arg2:[9]today)),

args:[10]args(

larg:[11]ne_list(

hd:[12]word(

syn:[13]syn(

cat:[14]np),

sem:[4],

args:[15]args(

larg:[16]e_list),

str:[17]ne_list(

hd:[4],

tl:[18]e_list)),

tl:[19]e_list)),

str:[20]ne_list(

hd:[21]ne_list(

hd:[7],

80

tl:[22]e_list),

tl:[23]ne_list(

hd:[24]ne_list(

hd:[9],

tl:[25]e_list),

tl:[26]e_list)))

smokes today

81

Appendix B

The Montague sample grammar

This Appendix presents an additional sample grammar for a fragment of English which incorporates Mon-
tague semantics (Gamut, 1991, Chapter 5). In what follows, Section B.1 contains the grammar per se, while
Section B.2 lists a number of sample queries.

An important feature of Montague grammar is the compositionality of meaning and syntax. The grammar
consists of pairs of rules: the syntactic rules analyze the phrase structure, and the translation rules utilize
the former to assign NL expressions a meaning in a logical language. The compositionality of semantics is
achieved through the extensive use of �-calculus. Since we work in a \rich", uni�cation-based formalism,
the rules of our grammar embody both the syntactic and translation informaion of original Montague rules.

We model our discussion of the grammar on (Gamut, 1991, Chapter 5), therefore the numbering of rules
coincides with that found ibid. Our sample grammar covers the following language phenomena:

� noun phrases,

� verb phrases (intransitive and transitive verbs),

� noun modi�cation with prenominal adjectives (e.g., \good man"),

� verb modi�cation with predicate adverbs, (e.g., \talks slowly"),

� sentence-modifying adverbs (e.g., \Necessarily John smokes"),

� de�nite and inde�nite articles (e.g., \a, the"),

� determiners (e.g., \every, one"),

� conjunction and disjunction (\and, or"),

� in�nitival complements (e.g., \John wants to smoke"),

� passive verbs (e.g., \Mary is loved by John"),

� relative clauses (e.g., \Every man who smokes su�ers").

Let us brie
y review the e�ect grammar rules:

1. Rule T 2 combines noun phrases with intransitive verbs into sentences, e.g., \John smokes" or \Every
man smokes". The rule applies the meaning of a noun phrase to that of an intransitive verb, and forms
the meaning of a sentence.

2. Rule T 30 categorimatically treats determiners and articles, and produces noun phrases from common
nouns, e.g., \A man" or \Every woman". The semantics of determiners uses the universal and existential
quanti�ers. For instance, the meaning of the word \every" is given by �P:�Q:8x(P (x) ! Q(x)). When
\every" is combined with the word \woman", the meaning of the former is applied to that of the latter
(�y:woman(y)), resulting (after a double �-reduction) in �Q:8x(woman(x)! Q(x)).

82

3. Having considered Montagovian semantics of common nouns and verbs, let us discuss the semantics
of proper nouns. Pure Montague approach de�nes the meaning of \John" as �P:P (john), where P is
a predicate which can be instantiated to the meaning of a verb (e.g., when rule T 2 is applied). This
semantics could be encoded with typed feature structures as follows:

fsj =

2
6666664

word

syn :

h
syn

cat :

�
np

�i

sem :

2
664

�-bind

var : 5
�
sem

�
rest : 1

"
arg 1

pred : 5

arg1 :

�
john

�
#
3
775

3
7777775

But then we encounter a problem with our generation scheme, as the �-reduction \built into" the rule
invalidates the predicate-argument structure, which is one of the basic assumptions of the generation
algorithm. Rule T 2 = NP Vi) S which combines this noun phrase with an intransitive verb is
a chain rule, which (as mentioned above) applies the meaning of the former to that of the latter.
Nevertheless, after two implicit �-reductions take place, the resulting expression actually applies the
meaning of the verb to that of \John".

The normalized version of rule T 2 is T 2N = NP (Vi)) S. During inversion, this rule is combined
with the (lexicon-derived) Functor-Introducing rule A [NP]) NP (A), thus resulting in the inverted
rule T 2I = Vi [NP]) S. For this rule to be applicable in bottom-up generation, the semantics of
NP should be recognized as the predicate, and that of Vi as as argument, which is clearly not the case
as we have seen above. Currently, the postorder
attening procedure would place the item for NP
before that of Vi, rendering rule T 2I useless.

There is also an additional problem with the above representation for the semantics of \John". One
of the key concepts of our generation algorithm is its ability to map semantic primitives (or, more
precisely, their semantic cores) into natural language constructs. The semantic core of fsj (denoted by

1) contains an unbound variable in the predicate position. Therefore it uni�es with (the semantic core
of) numerous lexicon entries (for example, all those representing intransitive verbs as unary predicates),
and not only with that for \John".

To overcome the above problems we resort to the following solution. We de�ne the semantics of proper
names similarly to that of quanti�ed terms, i.e., the meaning of \John" becomes similar to that of
\every man": �P:9x:((x = john) ^ P (x)).

fs'j =

2
6666666666666664

word

syn :

h
syn

cat :

�
np

�i

sem :

2
6666666664

�-bind

var : 5
�
sem

�

rest : 1

2
6666664

arg 1

pred :

2
6664
9-quant

var : [2]

�
sem

�
scope :

2
4 and

wff1 :

h
equal
wff1 : [2]
wff2 : [john]

i
wff2 : 5

�
atomic
param1 : [2]

�
3
5
3
7775

arg1 : 5

3
7777775

3
7777777775

str : 1

3
7777777777777775

This way the meaning of \John" is represented with a predicate (1) that operates on the semantics
of a verb (5).

4. Conventional Montague approach obtains the meaning of the phrase \John loves Mary" (love(john,
mary)) in three steps. First it applies the meaning of \loves" (�y:�x:love(x; y)) to that of \Mary"

83

(�Q:Q(mary)), to obtain �x:love(x; �Q:Q(mary)). Then the meaning of \John" (�P:P (john))
is applied to the outcome of the previous operation, resulting (after two �-reductions) in
love(john; �Q:Q(mary)). Finally, Notational Convention NC2 (see (Gamut, 1991, p. 176)) reduces
the last expression to love(john, mary).

Our approach is similar, except it doesn't perform the last step since it's not clear how to imple-
ment Meaning Postulates and Notational Conventions in a TFS-based formalism. Rule T 7 builds
intransitive verbs from transitive verbs and noun phrases. For example, the meaning of \loves Mary"
is obtained by applying the meaning of \loves" (�w:�z:love(z; w)) to that of \Mary" (�Q:9y:((y =
mary) ^ Q(y)); cf. the previous item on the semantics of proper nouns). This results in the expression
�z:love(z; �Q:9y:((y = mary) ^ Q(y))). The semantics of \John" �P:9x:((x = john) ^ P (x)) is then
applied to the last expression, yielding 9x:((x = john) ^ love(x; �Q:9y:((y = mary) ^ Q(y)))).

If it were possible to implement Meaning Postulates and Notational Conventions in a TFS-based
formalism, Meaning Postulate MP2 (see (Gamut, 1991, p. 175)) and then Notational Convention NC2
would reduce the last expression to 9x:((x = john) ^ 9y:((y = mary) ^ love(x; y))).

5. Rules T 2 pas and T 7 pas handle the formation of passive sentences. These rules are similar to their
\active" counterparts (T 2 and T 7, respectively), only the surface order of the body constituents
corresponds to the passive voice.

For example, the sentence \Mary is loved by John" can be derived using these two rules. Observe
that the semantics of this sentence is given by the logical form 9x:((x = john) ^ love(x; �Q:9y:((y =
mary) ^ Q(y)))), and is identical to that of the sentence \John loves Mary". This example demonstrates
thatAmalia is capable of generating paraphrases: given this meaning as input, Amalia would generate
both the active and the passive sentences.

6. Rule T 9 10 handles conjunction and disjunction of sentences, (e.g., \John smokes and/or Mary talks").
Uni�cation-based formalism allows us to abstract over speci�c connective values, and thus to combine
two Montague rules T9 and T10 (which handle conjunction and disjunction, respectively) into one.

7. Rule T 11 12 similarly addresses conjunction and disjunction of intransitive verbs.

8. Rule T 16 handles the construction of sentences with an in�nitival complement. For example, it
can be used to derive the sentence \John wants to smoke" with the meaning 9x:((x = john) ^
want(x; smoke(x))). Observe that both the main verb (\wants") and the complement verb (\to smoke")
share the same subject (the respective semantic primitives in the logical form are reentrant on x).

9. Rule T 17 modi�es common nouns with prenominal adjectives (cf. Example 4 in Section 3.2.4).

10. Rule T 18 handles the formation of relative clauses. Thus, a common noun (\man") may be combined
with a restrictive relative clause (\who smokes") to form a \complex" common noun expressing a
complex property: to be a man and to smoke. For example, this rule may be used to create the
sentence \Every man who smokes su�ers" with the semantics 8x:((man(x) ^ smoke(x)) ! suffer(x)).

For another example, consider the sentence \Every good man who talks loves Mary", whose meaning is
given by the logical form 8x:(((good(man))(x) ^ talk(x)) ! love(x; �Q:9y:((y = mary) ^ Q(y)))).
Because of the implementation of passive voice (see item 5 above), generation from this logical form
also produces the passive sentence \Mary is loved by every good man who talks".

11. Rule T 19 modi�es intransitive verbs with predicate adverbs. Similarly to in�nitival complements,
predicate adverbs are regarded semantically as second-order functions from properties of individuals
to sets of individuals.

Now let us consider an example of an ambiguous sentence, which is assigned by our grammar two
di�erent readings (with di�erent semantics). The example is based on the modi�cation of verbs with
in�nitival complements and predicate adverbs. Consider the sentence \John wants to leave urgently".
Depending on the order in which rules T 16 and T 19 are applied, the following two readings may
result:

84

(a) the adverb \urgently" modi�es the main verb \wants", yielding the semantics 9x:((x = john) ^
(urgently(want))(x; leave(x)));

(b) the adverb \urgently" modi�es the complement verb \to leave", yielding the semantics 9x:((x =
john) ^ want(x; (urgently(leave))(x))).

It should be observed that Amalia produces the same sentence when generating from either semantics.

12. Finally, rule T 20 handles the case of sentence-modifying adverbs, by applying the semantics of an
adverb to that of a sentence.

B.1 Montague grammar

%%

%

% File: Montague grammar

%

% Covers:

%

% 1) noun phrases

% 2) verb phrases (intransitive and transitive verbs)

% 3) modifiers - prenominal adjectives and predicate adverbs

% 4) sentence-modifying adverbs

% 5) articles - a, the

% 6) determiner expressions - every, one

% 7) conjunction, disjunction

% 8) infinitival complements

% 9) passive verbs

% 10) relative clauses

%

% Parses:

% 1) John smokes, John loves Mary passionately

% 2) Every good man smokes slowly, A man smokes

% 3) Every man loves Mary passionately

% 4) John smokes and/or Mary talks

% 5) John smokes and/or talks

% 6) Necessarily John smokes

% 7) John wants to smoke

% 8) John wants to leave urgently (2 parses)

% 9) Mary is loved by John (same semantics as "John loves Mary")

% 10) Every man who smokes suffers

%

%%

%%%********************** Type Hierarchy

%th

bot sub [sign, syn, syn_term, sem, args, list, form].

sign sub [phrase].

phrase sub [word] intro [syn:syn, sem:sem, args:args, str:list].

word sub [].

syn sub [] intro [cat:syn_term].

syn_term sub [s, np, vp, det, cn, mod, conj, reltvzr].

85

s sub [].

np sub [].

vp sub [vi, vt, vic].

vi sub [].

vt sub [].

vic sub [].

det sub [].

cn sub [].

mod sub [adj, pred_adv, sent_adv].

adj sub [].

pred_adv sub [].

sent_adv sub [].

conj sub [and_conj, or_conj].

and_conj sub [].

or_conj sub [].

reltvzr sub [].

sem sub [const, funct].

const sub [pn].

pn sub [john, mary].

john sub [].

mary sub [].

funct sub [predic, atomic, quant, bool].

predic sub [noun, verb, modifier, relativizer].

noun sub [man, woman].

man sub [].

woman sub [].

verb sub [v_intrans, v_trans, v_inf_comp].

v_intrans sub [smoke, talk, suffer, leave].

smoke sub [].

talk sub [].

suffer sub [].

leave sub [].

v_trans sub [love].

love sub [].

v_inf_comp sub [want].

want sub [].

modifier sub [adjective, adverb].

adjective sub [good].

good sub [].

adverb sub [slowly, passionately, urgently, necessarily].

slowly sub [].

passionately sub [].

urgently sub [].

necessarily sub [].

relativizer sub [who].

who sub [].

atomic sub[arg_1, param_1] intro [pred:sem, form:form].

arg_1 sub [arg_2, atomic_1_1] intro [arg1:sem].

arg_2 sub [arg_3, atomic_2_1] intro [arg2:sem].

arg_3 sub [atomic_3_1] intro [arg3:sem].

atomic_3_1 sub [atomic_3_2].

atomic_3_2 sub [atomic_3_3].

86

atomic_3_3 sub [].

atomic_2_1 sub [atomic_2_2, atomic_3_1].

atomic_2_2 sub [atomic_3_2, atomic_2_3].

atomic_2_3 sub [atomic_3_3].

atomic_1_1 sub [atomic_1_2, atomic_2_1].

atomic_1_2 sub [atomic_1_3, atomic_2_2].

atomic_1_3 sub [atomic_2_3].

param_1 sub [param_2, atomic_1_1] intro [param1:sem].

param_2 sub [param_3, atomic_1_2] intro [param2:sem].

param_3 sub [atomic_1_3] intro [param3:sem].

quant sub [l_bind, gen_quant] intro [var:sem].

l_bind sub [] intro [rest:sem].

gen_quant sub [a_quant, e_quant] intro [scope:sem].

a_quant sub [].

e_quant sub [].

bool sub [equal, if, iff, and_or, rel_and] intro [wff1:sem, wff2:sem].

equal sub [].

if sub [].

iff sub [].

and_or sub [and, or].

and sub [].

or sub [].

rel_and sub [].

args sub [] intro [larg:list].

list sub [ne_list, e_list].

ne_list sub [] intro [hd:bot, tl:list].

e_list sub [].

form sub [vform].

vform sub [fin_inf, pas].

fin_inf sub [fin, inf].

fin sub [].

inf sub [].

pas sub [].

%macros

%%%********************** Macros

lex(Cat, Sem) macro

(word, syn:(syn, cat:Cat),

sem:Sem).

cr(Sem) macro

(sem:Sem).

%grammar

%%%********************** Grammar Rules

t_2 rule

%sem_head_1

(phrase, syn:(syn, cat:s),

sem:R6)

===>

87

cat> % head

(phrase, syn:(syn, cat:np),

sem:(l_bind, (var:R5, rest:R6))),

cat>

(phrase, syn:(syn, cat:vi),

sem:(l_bind, (var:R7, rest:(R5, atomic, form:fin)))).

t_2_pas rule

%sem_head_2

(phrase, syn:(syn, cat:s),

sem:R6)

===>

cat>

(phrase, syn:(syn, cat:vi),

sem:(l_bind, (var:R7, rest:(R5, atomic, form:pas)))),

cat> % head

(phrase, syn:(syn, cat:np),

sem:(l_bind, (var:R5, rest:R6))).

t_3_prime rule

%sem_head_1

(phrase, syn:(syn, cat:np),

sem:R6)

===>

cat> % head

(phrase, syn:(syn, cat:det),

sem:(l_bind, (var:R5, rest:R6))),

cat>

(phrase, syn:(syn, cat:cn),

sem:(l_bind, (var:R7, rest:R5))).

t_7 rule

%sem_head_1

(phrase, syn:(syn, cat:vi),

sem:(R6, l_bind, rest:(atomic, form:fin)))

===>

cat> % head

(phrase, syn:(syn, cat:vt),

sem:(l_bind, (var:R5, rest:R6))),

cat>

(phrase, syn:(syn, cat:np),

sem:R5).

t_7_pas rule

%sem_head_2

(phrase, syn:(syn, cat:vi),

sem:(R6, l_bind, rest:(atomic, form:pas)))

===>

88

cat>

(phrase, syn:(syn, cat:np),

sem:R5),

cat> % head

(phrase, syn:(syn, cat:vt),

sem:(l_bind, (var:R5, rest:R6))).

t_9_10 rule

%sem_head_2

(phrase, syn:(syn, cat:s),

sem:R1)

===>

cat>

(phrase, syn:(syn, cat:s),

sem:R5),

cat> % head

(word, syn:(syn, cat:conj),

sem:(R1, atomic,

(pred:(and_or, wff1:R5, wff2:R6)))),

cat>

(phrase, syn:(syn, cat:s),

sem:R6).

t_11_12 rule

%sem_head_2

(phrase, syn:(syn, cat:vi),

sem:(l_bind, var:R2, rest:R1))

===>

cat>

(phrase, syn:(syn, cat:vi),

sem:(l_bind, var:R2, rest:(R5, form:Vform))),

cat> % head

(word, syn:(syn, cat:conj),

sem:(R1, atomic,

(pred:(and_or, wff1:R5, wff2:R6),

form:Vform, param1:R2))),

cat>

(phrase, syn:(syn, cat:vi),

sem:(l_bind, (var:R2, rest:(R6, form:Vform)))).

t_16 rule

%sem_head_1

(phrase, syn:(syn, cat:vi),

sem:R6)

===>

cat> % head

(phrase, syn:(syn, cat:vic),

sem:(l_bind, var:R5, rest:R6)),

cat>

89

(phrase, syn:(syn, cat:vi),

sem:(l_bind, rest:R5)).

t_17 rule

%sem_head_1

(phrase, syn:(syn, cat:cn),

sem:R1)

===>

cat> % head

(phrase, syn:(syn, cat:adj),

sem:(l_bind, (var:R5, rest:(R1, l_bind, var:R6)))),

cat>

(phrase, syn:(syn, cat:cn),

sem:(l_bind, (var:R6, rest:R5))).

t_18 rule

%sem_head_2

(phrase, syn:(syn, cat:cn),

sem:(l_bind, var:R2, rest:R1))

===>

cat>

(phrase, syn:(syn, cat:cn),

sem:(l_bind, var:R2, rest:R5)),

cat> % head

(word, syn:(syn, cat:reltvzr),

sem:(R1, atomic,

(pred:(rel_and, wff1:R5, wff2:R6),

param1:R2))),

cat>

(phrase, syn:(syn, cat:vi),

sem:(l_bind, (var:R2, rest:(R6, form:fin)))).

t_19 rule

%sem_head_2

(phrase, syn:(syn, cat:vi),

sem:R1)

===>

cat> %head

(phrase, syn:(syn, cat:vi),

sem:(l_bind, (var:R6, rest:(R5, form:(Vform, fin_inf))))),

cat>

(phrase, syn:(syn, cat:pred_adv),

sem:(l_bind, var:R5, rest:(R1, l_bind, var:R6,

rest:(form:Vform)))).

t_20 rule

%sem_head_1

(phrase, syn:(syn, cat:s),

90

sem:R1)

===>

cat> %head

(phrase, syn:(syn, cat:sent_adv),

sem:(l_bind, (var:R5, rest:R1))),

cat>

(phrase, syn:(syn, cat:s),

sem:R5).

%lexicon

%%%********************** Lexical Entries

% lex

% Lambda X. Lambda Y. Forall x. (X(x) --> Y(x))

every --->

(@ lex(det,

(l_bind,

(var:R5,

rest:(l_bind,

(var:R6,

rest:(atomic,

(pred:(a_quant,

(var:R2,

scope:(if,

wff1:(R5, atomic, param1:R2),

wff2:(R6, atomic, param1:R2))))),

arg1:R5,

arg2:R6))))))).

% lex

% Lambda X. Lambda Y. Exists x. (Forall y. (X(y) <--> x=y) & Y(x))

the --->

(@ lex(det,

(l_bind,

(var:R5,

rest:(l_bind,

(var:R6,

rest:(atomic,

(pred:(e_quant,

(var:R2,

scope:(and,

wff1:(a_quant,

(var:R3,

scope:(iff,

wff1:(R5, atomic, param1:R3),

wff2:(equal,

wff1:R2, wff2:R3)))),

wff2:(R6, atomic, param1:R2))))),

arg1:R5,

arg2:R6))))))).

% lex

91

% Lambda X. Lambda Y. Exists x. (X(x) & Y(x))

a --->

(@ lex(det,

(l_bind,

(var:R5,

rest:(l_bind,

(var:R6,

rest:(atomic,

(pred:(e_quant,

(var:R2,

scope:(and,

wff1:(R5, atomic, param1:R2),

wff2:(R6, atomic, param1:R2))))),

arg1:R5,

arg2:R6))))))).

% lex

% Lambda X. Lambda Y. Exists x. Forall y. ((X(y) & Y(y)) <--> x=y)

one --->

(@ lex(det,

(l_bind,

(var:R5,

rest:(l_bind,

(var:R6,

rest:(atomic,

(pred:(e_quant,

(var:R2,

scope:(a_quant,

(var:R3,

scope:(iff,

wff1:(and,

wff1:(R5, atomic,

param1:R3),

wff2:(R6, atomic,

param1:R3)),

wff2:(equal,

wff1:R2,

wff2:R3))))))),

arg1:R5,

arg2:R6))))))).

% lex

% Lambda x. man(x)

man --->

(@ lex(cn,

(l_bind, (var:R5,

rest:(atomic, (pred:man, arg1:R5, param1:R5)))))).

% lex

% Lambda x. woman(x)

woman --->

(@ lex(cn,

92

(l_bind, (var:R5,

rest:(atomic, (pred:woman, arg1:R5, param1:R5)))))).

% lex

% Lambda P. Exists x. ((x = john) & P(x))

john --->

(@ lex(np,

(l_bind,

(var:R5,

rest:(atomic,

pred:(e_quant,

(var:R2,

scope:(and,

wff1:(equal, wff1:R2, wff2:john),

wff2:(R5, atomic, param1:R2)))),

arg1:R5))))).

% lex

% Lambda P. Exists x. ((x = mary) & P(x))

mary --->

(@ lex(np,

(l_bind,

(var:R5,

rest:(atomic,

pred:(e_quant,

(var:R2,

scope:(and,

wff1:(equal, wff1:R2, wff2:mary),

wff2:(R5, atomic, param1:R2)))),

arg1:R5))))).

% lex

% Lambda x. smoke(x)

smokes --->

(@ lex(vi,

(l_bind, (var:R5,

rest:(atomic, (pred:smoke, form:fin,

arg1:R5, param1:R5)))))).

% lex

% Lambda x. smoke(x)

to_smoke --->

(@ lex(vi,

(l_bind, (var:R5,

rest:(atomic, (pred:smoke, form:inf,

arg1:R5, param1:R5)))))).

% lex

% Lambda x. talk(x)

talks --->

(@ lex(vi,

(l_bind, (var:R5,

93

rest:(atomic, (pred:talk, form:fin,

arg1:R5, param1:R5)))))).

% lex

% Lambda x. suffer(x)

suffers --->

(@ lex(vi,

(l_bind, (var:R5,

rest:(atomic, (pred:suffer, form:fin,

arg1:R5, param1:R5)))))).

% lex

% Lambda x. leave(x)

to_leave --->

(@ lex(vi,

(l_bind, (var:R5,

rest:(atomic, (pred:leave, form:inf,

arg1:R5, param1:R5)))))).

% lex

% Lambda y. Lambda x. love(x,y)

loves --->

(@ lex(vt,

(l_bind, (var:R6,

rest:(l_bind, (var:R5,

rest:(atomic, (pred:love, form:fin,

arg1:R5,

arg2:R6,

param1:R5,

param2:R6)))))))).

% lex

% Lambda y. Lambda x. love(x,y)

is_loved_by --->

(@ lex(vt,

(l_bind, (var:R6,

rest:(l_bind, (var:R5,

rest:(atomic, (pred:love, form:pas,

arg1:R5,

arg2:R6,

param1:R5,

param2:R6)))))))).

% lex

% Lambda Y. Lambda x. want(x, Y(x))

% Note that Vic shares the subject (R5) with the verb it modifies (R6).

wants --->

(@ lex(vic,

(l_bind, (var:(R6, form:inf, param1:R5),

rest:(l_bind, (var:R5,

rest:(atomic, (pred:want, form:fin,

arg1:R5,

94

arg2:R6,

param1:R5,

param2:R6)))))))).

% lex

% Lambda X. Lambda x. good(X(x))

good --->

(@ lex(adj,

(l_bind, (var:R5,

rest:(l_bind, (var:R6,

rest:(atomic,(pred:good,

arg1:R5,

param1:R6)))))))).

% lex

% Lambda X. Lambda x. slowly(X(x))

slowly --->

(@ lex(pred_adv,

(l_bind, (var:R5,

rest:(l_bind, (var:R6,

rest:(atomic,(pred:slowly,

arg1:R5,

param1:R6)))))))).

% lex

% Lambda X. Lambda x. passionately(X(x))

passionately --->

(@ lex(pred_adv,

(l_bind, (var:R5,

rest:(l_bind, (var:R6,

rest:(atomic,

(pred:passionately,

arg1:R5,

param1:R6)))))))).

% lex

% Lambda X. Lambda x. urgently(X(x))

urgently --->

(@ lex(pred_adv,

(l_bind, (var:R5,

rest:(l_bind, (var:R6,

rest:(atomic,

(pred:urgently,

arg1:R5,

param1:R6)))))))).

% lex

% Lambda X. necessarily(X)

necessarily --->

(@ lex(sent_adv,

(l_bind, var:R5,

rest:(atomic, pred:necessarily,

95

arg1:R5)))).

% lex

and --->

(@ lex(conj,

(atomic,

(pred:(and, wff1:R5, wff2:R6),

arg1:R5, arg2:R6)))).

% lex

or --->

(@ lex(conj,

(atomic,

(pred:(or, wff1:R5, wff2:R6),

arg1:R5, arg2:R6)))).

% lex

who --->

(@ lex(reltvzr,

(atomic,

(pred:(rel_and, wff1:R5, wff2:R6),

arg1:R5, arg2:R6)))).

B.2 Sample queries

%macros

%%%********************** Macros

syn(Cat) macro

(syn:(syn, cat:Cat)).

%query

%%%% every man smokes

%%%% Forall x. (man(x) -> smoke(x))

>>>>

(phrase,

syn:(syn, cat:s),

sem:(atomic,

pred:(a_quant,

var:R2,

scope:(if,

wff1:(R5, atomic, pred:man, arg1:R2, param1:R2),

wff2:(R6, atomic, pred:smoke, arg1:R2, param1:R2))),

arg1:R5,

arg2:R6)).

%%%% every good man smokes

%%%% Forall x. ((good(man))(x) -> smoke(x))

>>>>

(phrase,

96

syn:(syn, cat:s),

sem:(atomic,

pred:(a_quant,

var:R2,

scope:(if,

wff1:(R5, atomic, pred:good,

arg1:(R7, pred:man,

arg1:R2, param1:R2),

param1:R2),

wff2:(R6, atomic, pred:smoke,

arg1:R2, param1:R2))),

arg1:R5,

arg2:R6)).

%%%% every good man smokes slowly

%%%% Forall x. ((good(man))(x) -> (slowly(smoke))(x))

>>>>

(phrase,

syn:(syn, cat:s),

sem:(atomic,

pred:(a_quant,

var:R2,

scope:(if,

wff1:(R5, atomic,

(pred:good,

arg1:(R7, pred:man, arg1:R2, param1:R2),

param1:R2)),

wff2:(R6, atomic,

(pred:slowly,

arg1:(R8, pred:smoke, arg1:R2, param1:R2),

param1:R2)))),

arg1:R5,

arg2:R6)).

%%%% john smokes

%%%% Exists x. ((x = john) & smoke(x))

>>>>

(phrase,

syn:(syn, cat:s),

sem:(atomic,

pred:(e_quant,

var:R2,

scope:(and,

wff1:(equal, wff1:R2, wff2:john),

wff2:(R5, atomic, pred:smoke,

arg1:R2, param1:R2))),

arg1:R5)).

%%%% john smokes slowly

%%%% Exists x. ((x = john) & (slowly(smoke))(x))

>>>>

(phrase,

97

syn:(syn, cat:s),

sem:(atomic,

pred:(e_quant,

var:R2,

scope:(and,

wff1:(equal, wff1:R2, wff2:john),

wff2:(R5, atomic,

(pred:slowly,

arg1:(R7, pred:smoke,

arg1:R2, param1:R2),

param1:R2)))),

arg1:R5)).

%%%% john loves mary

%%%% Exists x. ((x = john) &

%%%% love(x, Lambda P. Exists y.((y = mary) & P(y))))

>>>>

(phrase,

syn:(syn, cat:s),

sem:(arg_1,

pred:(e_quant,

var:R2,

scope:(and,

wff1:(equal, wff1:R2, wff2:john),

wff2:(R5,atomic_2_2,

pred:love,

arg1:R2,

arg2:(R6,l_bind,

var:R7,

rest:(arg_1,

pred:(e_quant,

var:R1,

scope:(and,

wff1:(equal, wff1:R1, wff2:mary),

wff2:(R7, param_1, pred:sem, param1:R1))),

arg1:R7)),

param1:R2,

param2:R6))),

arg1:R5)).

%%%% john loves mary passionately

%%%% Exists x. ((x = john) &

%%%% (passionately(love))(x, Lambda P. Exists y.((y = mary) & P(y))))

>>>>

(phrase,

syn:(syn, cat:s),

sem:(arg_1,

pred:(e_quant,

var:R2,

scope:(and,

wff1:(equal, wff1:R2, wff2:john),

wff2:(R5, atomic,

98

pred:passionately,

arg1:(R6,atomic_2_2,

pred:love,

arg1:R2,

arg2:(R7,l_bind,

var:(R8,param_1,(pred:sem, param1:sem)),

rest:(arg_1,

pred:(e_quant,

var:R1,

scope:(and,

wff1:(equal, wff1:R1, wff2:mary),

wff2:R8)),

arg1:R8)),

param1:R2,

param2:R7),

param1:R2))),

arg1:R5)).

%%%% every man who smokes suffers

%%%% Forall x. ((man(x) & smoke(x)) -> suffer(x))

>>>>

(phrase,

syn:(syn, cat:s),

sem:(atomic,

pred:(a_quant,

var:R2,

scope:(if,

wff1:(R5, atomic,

pred:(rel_and,

wff1:(R3, pred:man,

arg1:R2, param1:R2),

wff2:(R4, pred:smoke,

arg1:R2, param1:R2)),

arg1:R3, arg2:R4,

param1:R2),

wff2:(R6, atomic, pred:suffer,

arg1:R2, param1:R2))),

arg1:R5,

arg2:R6)).

%%%% john smokes and mary talks

%%%% Exists x. ((x = john) & smoke(x)) & Exists y. ((y = mary) & talk(y))

>>>>

(phrase,

syn:(syn, cat:s),

sem:(atomic, pred:(and,

wff1:(R7, atomic,

pred:(e_quant,

var:R2,

scope:(and,

wff1:(equal,

wff1:R2, wff2:john),

99

wff2:(R5, atomic, pred:smoke,

arg1:R2, param1:R2))),

arg1:R5),

wff2:(R8, atomic,

pred:(e_quant,

var:R3,

scope:(and,

wff1:(equal,

wff1:R3, wff2:mary),

wff2:(R6, atomic, pred:talk,

arg1:R3, param1:R3))),

arg1:R6)),

arg1:R7, arg2:R8)).

%%%% necessarily john smokes

%%%% necessarily(Exists x. ((x = john) & smoke(x)))

>>>>

(phrase,

syn:(syn, cat:s),

sem:(atomic,

pred:necessarily,

arg1:(R1, atomic,

pred:(e_quant,

var:R2,

scope:(and,

wff1:(equal, wff1:R2, wff2:john),

wff2:(R5, atomic, pred:smoke,

arg1:R2, param1:R2))),

arg1:R5))).

%%%% john smokes or talks

%%%% Exists x. ((x = john) & ((smoke(x)) | (talk(x))))

>>>>

(phrase,

syn:(syn, cat:s),

sem:(atomic,

pred:(e_quant,

var:R2,

scope:(and,

wff1:(equal, wff1:R2, wff2:john),

wff2:(R5, atomic,

pred:(or,

wff1:(R7, atomic, pred:smoke,

arg1:R2, param1:R2),

wff2:(R8, atomic, pred:talk,

arg1:R2, param1:R2)),

arg1:R7, arg2:R8, param1:R2))),

arg1:R5)).

%%%% john wants to smoke

%%%% Exists x. ((x = john) & want(x, smoke(x)))

>>>>

100

(phrase,

syn:(syn, cat:s),

sem:(atomic,

pred:(e_quant,

var:R2,

scope:(and,

wff1:(equal, wff1:R2, wff2:john),

wff2:(R5, atomic, pred:want,

arg1:R2,

arg2:(R3, atomic, pred:smoke,

arg1:R2, param1:R2),

param1:R2,

param2:R3))),

arg1:R5)).

%%%% john wants to leave urgently

%%%% ('urgently' modifies 'wants')

%%%% Exists x. ((x = john) & (urgently(want))(x, leave(x)))

>>>>

(phrase,

syn:(syn, cat:s),

sem:(atomic,

pred:(e_quant,

var:R2,

scope:(and,

wff1:(equal, wff1:R2, wff2:john),

wff2:(R5, atomic, pred:urgently,

arg1:(R6, atomic, pred:want,

arg1:R2,

arg2:(R3, atomic, pred:leave,

arg1:R2, param1:R2),

param1:R2,

param2:R3,

param1:R2)))),

arg1:R5)).

%%%% john wants to leave urgently

%%%% ('urgently' modifies 'leave')

%%%% Exists x. ((x = john) & want(x, (urgently(leave))(x)))

>>>>

(phrase,

syn:(syn, cat:s),

sem:(atomic,

pred:(e_quant,

var:R2,

scope:(and,

wff1:(equal, wff1:R2, wff2:john),

wff2:(R5, atomic, pred:want,

arg1:R2,

arg2:(R3, pred:urgently,

arg1:(atomic, pred:leave,

arg1:R2, param1:R2),

101

param1:R2),

param1:R2,

param2:R3))),

arg1:R5)).

%%%% every good man who talks loves mary

%%%% Forall x. (((good(man))(x) & talk(x))->

%%%% love(x, Lambda P. Exists y. ((y=mary) & P(y))))

>>>>

(phrase,

syn:(syn, cat:s),

sem:(atomic,

pred:(a_quant,

var:R2,

scope:(if,

wff1:(R5, atomic,

pred:(rel_and,

wff1:(R8, atomic, pred:good,

arg1:(pred:man, arg1:R2, param1:R2),

param1:R2),

wff2:(R9, pred:talk,

arg1:R2, param1:R2)),

arg1:R8, arg2:R9,

param1:R2),

wff2:(R6, atomic,

pred:love,

arg1:R2,

arg2:(R3,l_bind,(

var:R7,

rest:(atomic,(

pred:(e_quant,(

var:R1,

scope:(and,

wff1:(equal, wff1:R1, wff2:mary),

wff2:(R7,param_1,(pred:sem, param1:R1))))),

arg1:R7)))),

param1:R2,

param2:R3))),

arg1:R5,

arg2:R6)).

102

References

Aho, Alfred V., Ravi Sethi, and Je�rey D. Ullman. 1986. Compilers: Principles, Techniques, and Tools.
Addison-Wesley series in Computer Science. Addison-Wesley Publishing Company, Inc., Reading, MA.

Aho, Alfred V. and Je�rey D. Ullman. 1972. The Theory of Parsing, Translation, and Compiling. Volume
1: Parsing. Series in Automatic Computation. Prentice Hall, Inc., Englewood Cli�s, New Jersey, USA.

Calder, Jonathan, Mike Reape, and Henk Zeevat. 1989. An algorithm for generation in uni�cation categorial
grammar. In Proceedings of the Fourth Conference of the European Chapter of the Association for
Computational Linguistics, pages 233{240, Manchester, England.

Carpenter, Bob. 1992a. ALE - the attribute logic engine: User's guide. Technical report, Laboratory
for Computational Linguistics, Philosophy Department, Carnegie Mellon University, Pittsburgh, PA,
December.

Carpenter, Bob. 1992b. The Logic of Typed Feature Structures. With Applications to Uni�cation Grammars,
Logic Programs and Constraint Resolution. Cambridge University Press.

Cole, Ronald A., Joseph Mariani, Hans Uszkoreit, Annie Zaenen, and Victor Zue, editors. 1995.
Survey of the State of the Art in Human Language Technology. Available electronically at
http://www.cse.ogi.edu/CSLU/HLTsurvey/, Oregon Graduate Institute of Science and Technology,
Portland, Oregon, USA.

Earley, Jay. 1970. An e�cient context-free parsing algorithm. Communications of the ACM, 13(2):94{102,
February.

Elhadad, Michael, 1989. FUF: the Universal Uni�er User Manual. Department of Computer Science,
Columbia University, New York.

Gamut, L.T.F. 1991. Logic, Language, and Meaning. Volume 2: Intensional Logic and Logical Grammar.
The University of Chicago Press, Chicago, USA.

Gerdemann, Dale D. 1991. Parsing and generation of uni�cation grammars. Cognitive Science Technical
Report CS-91-06 (Language Series), The Beckman Institute, 405 North Mathews Avenue, Urbana, IL
61801, USA.

Hopcroft, John E. and Je�rey D. Ullman. 1979. Introduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley Publishing Company, Inc., Reading, MA.

Hovy, Eduard, Gertjan van Noord, Guenter Neumann, and John Bateman. 1995. Language generation. In
Cole et al. (Cole et al., 1995), pages 161{188.

Johnson, Mark. 1988. Attribute-Value Logic and the Theory of Grammar, volume 16 of CSLI Lecture Notes.
Center for the Study of Language and Information, Stanford University, Stanford, CA 94305, USA.

Kaplan, Ronald M. and Joan Bresnan. 1982. Lexical-functional grammar: A formal system for grammatical
representation. In Joan Bresnan, editor, The Mental Representation of Grammatical Relations. The MIT
Press, Cambridge, MA, pages 173{281.

Kay, Martin. 1996. Chart generation. In Proceedings of the 34th Annual Meeting of the ACL, pages 200{204,
Santa Cruz, CA, USA. Association for Computational Linguistics.

Kernighan, Brian W. and Dennis M. Ritchie. 1988. The C Programming Language. Prentice Hall Software
Series. Prentice Hall, Inc., Englewood Cli�s, New Jersey, USA, second edition.

Nerbonne, John. 1992. A feature-based syntax/semantics interface. Research Report RR-92-42, Deutsches
Forschungszentrum fur Kunstliche Intelligenz, GmBH, August.

103

Neumann, Guenter. 1994. A Uniform Computational Model for Natural Language Parsing and Generation.
Ph.D. thesis, Universitaet des Saarlandes, Saarbruecken, Germany.

Ousterhout, John K. 1994. Tcl and the Tk Toolkit. Addison-Wesley Professional Computing Series. Addison-
Wesley Publishing Company, Inc.

Pereira, Fernando C.N. and Stuart M. Shieber. 1987. Prolog and Natural-Language Analysis. Number 10 in
CSLI Lecture Notes. CSLI, Stanford University, Stanford, CA.

Pollard, Carl J. and Ivan A. Sag. 1994. Head-driven Phrase Structure Grammar. Studies in Contemporary
Linguistics. The University of Chicago Press, Chicago, USA.

Popowich, Fred. 1996. A chart generator for shake and bake machine translation. In Proceedings of AI-96
{ 11th Canadian Conference on Arti�cial Intelligence, Toronto, Canada, May.

Reiter, Ehud. 1994. Has a consensus NL generation architecture appeared, and is it psycholinguistically
plausible? In Proceedings of the Seventh International Workshop on Natural Language Generation, pages
163{170, Nonantum Inn, Kennebunkport, Maine, June 21-24,.

Samuelsson, Christer. 1995. An e�cient algorithm for surface generation. In Proc. of the 14th International
Joint Conference on Arti�cial Intelligence, Montreal, Canada, pages 1414{1419. Morgan Kaufmann,
August.

Shieber, Stuart M. 1986. An Introduction to Uni�cation-based Approaches to Grammar. Number 4 in CSLI
Lecture Notes. CSLI, Stanford University, Stanford, CA 94305, USA.

Shieber, Stuart M. 1988. A uniform architecture for parsing and generation. In Proc. of the 12th Interna-
tional Conference on Computational Linguistics, volume 1, pages 614{619, Budapest, Hungary.

Shieber, Stuart M., Gertjan van Noord, Fernando C. N. Pereira, and Robert C. Moore. 1990. Semantic-
head-driven generation. Computational Linguistics, 16(1):30{42, March.

Strzalkowski, Tomek, editor. 1994. Reversible Grammar in Natural Language Processing. The Kluwer In-
ternational Series in Engineering and Computer Science. Kluwer Academic Publishers, The Netherlands.

Trujillo, Arturo. 1997. Determining internal and external indices for chart generation. In Proc. of the 7th
International Conference on Theoretical and Methodological Issues in Machine Translation (TMI-97).

Warren, David H. D. 1983. An abstract Prolog instruction set. Technical Note 309, SRI International,
Menlo Park, CA, August.

Whitelock, P. 1992. Shake-and-bake translation. In Proc. of the 14th International Conference on Compu-
tational Linguistics, pages 784{791, Nantes, France, August.

Wintner, Shuly. 1997. An Abstract Machine for Uni�cation Grammars. Ph.D. thesis, Technion, Israel
Institute of Technology, Haifa, Israel, January.

Wintner, Shuly, Evgeniy Gabrilovich, and Nissim Francez. 1997a. AMALIA { a uni�ed platform for parsing
and generation. In R. Mitkov, N. Nicolov, and N. Nicolov, editors, Proc. of \Recent Advances in Natural
Language Processing" (RANLP'97), pages 135{142, Tzigov Chark, Bulgaria, September.

Wintner, Shuly, Evgeniy Gabrilovich, and Nissim Francez, 1997b. AMALIA { Abstract MAchine for LIn-
guistic Applications { User's Guide. Laboratory for Computational Linguistics, Computer Science De-
parmtent, Technion, Israel Institute of Technology, Haifa, Israel, June.

Younger, D.H. 1967. Recognition and parsing of context-free languages in time n3. Information and control,
10(2):189{208.

104

