
Heap Ltd.

Evgeniy Gabrilovich Alex Gontmakher
gabr@cs.technion.ac.il gsasha@cs.technion.ac.il

Abstract
Programmers frequently need to select a number of best elements from a sequence of values.
This problem is not even nearly new, and several algorithms have been developed to address
it, each having different time complexity characteristics. We analyze the various existing
algorithms, and then present another one called Limited Heap. This algorithm provides
arguably the best tradeoff between speed and memory utilization. The algorithm is frequently
useful (in fact, both authors have independently used it in different projects), but is
surprisingly little known to the wide public. The implementation of the proposed idea is very
simple, and expressed in terms of conventional heap operations only takes several dozens
lines of code.

Introduction
When you perform a search on a Web site, you usually want to see the most relevant results
first. To do this, the search engine assigns each search result a relevance score, and ultimately
returns 10 or 20 highest-scoring results.

Selecting several best elements is obviously not limited to the Web. For instance, when
monitoring system health, you might want to find the ten biggest files on a given disk. In the
realm of genetic algorithms, during each phase you choose a certain number of the fittest
organisms to form the next generation.

While finding a single best element in a sequence is straightforward, selecting k best elements
is a tricky business. There are several solutions, with different performance characteristics.
The trade-off between time and space is not trivial, and the most practical algorithm must be
selected very carefully.

What is the best that you can expect from a good solution? On the one hand, each element
must be examined at least once, so the time complexity can be no lower than O(N). On the
other hand, the resulting k best elements need to be stored, hence the memory complexity can
be no better than O(k). The problem is, however, that you cannot have both time and memory
complexity low at the same time.

Solution #1: Sorting
A naïve way to select the k largest elements is simply to store the entire sequence in memory,
sort it in the decreasing order, and then return the first k elements from the sorted sequence.
Coding this technique is trivial since a sorting algorithm is a part of the standard library in
virtually any language.

The time complexity, however, is mediocre – O(N · log(N)). In addition, storing the entire
sequence consumes O(N) additional memory. When N is very large (and, especially, when the
elements are produced on-the-fly and need not be permanently stored otherwise), this
technique may impose an unreasonable burden on memory usage.

Solution #2: Heap sort
An apparently better way to achieve our aim is to use a variant of heap sort. The original heap
sort algorithm [1] collects all the elements in an array, rearranges the array as a heap (this can
be accomplished in O(N) in the worst case), and then extracts the largest element from the
heap N times (this amounts to O(N · log(N)) since the heap property needs to be restored after

each extraction). In our case, we only need to perform k extractions to obtain the k largest
elements, hence the overall time complexity is O(N + k · log(N)).

Note that this solution still suffers from the same drawback as the previous one, as it requires
O(N) additional memory to operate the heap that initially contains the entire sequence.

Solution #3: Limited heap
When the number of elements in the sequence (N) is huge, we’d rather not store them all
merely for selecting the k largest ones. Let us see how we can minimize the memory
requirements, using only O(k) additional memory to store the k elements requested.

To achieve this aim, we use a limited heap, which cannot grow beyond k elements. We “sift”
the entire sequence through it, while at any given moment the heap stores the k largest
elements seen so far. New elements are only inserted if they are larger than the current
smallest element in the heap, in which case they replace the latter, and the heap size never
grows beyond k.

Ideally, we would like to sift all the sequence elements through the heap one by one,
removing the worst element whenever the heap size becomes larger than k. However, while
the heap provides easy access to its best element, removing the worst element is more
complex and can require as much as O(k) operations. To circumvent this problem, we observe
that during the selection process we do not need access to the best element, but only to the
worst. Thus, we reverse the heap order, so that the heap root always contains the current
smallest element. In fact, we maintain a “min-heap”, even though what we really want is to
select the k largest elements.

Complexity analysis: At the steady state, when the heap contains k items, determining the
value of the smallest one takes O(1) (due to the “min-heap” ordering). Whenever applicable,
replacing the smallest element takes O(log(k)), thus the overall worst-case time complexity is
O(N · log(k)). Observe that since the heap is limited, it only keeps as many elements as are
eventually required, hence the additional memory complexity is only O(k) – a substantial
saving when k << N !

Implementation of this algorithm is straightforward. Reverting the order of elements in the
heap means you just need to override the comparison operation it uses. In C++, the
comparison predicate is a template parameter to the heap operations, so the algorithm can be
readily implemented using the heap manipulation functions from the C++ standard library [2].

Listing 1 presents a fragment of the C++ code of limited heap1 (template class KMaxValues).
The class inherits from std::vector, and thus capitalizes on its container functionality. To make
the template more generic, we allow elements to carry a “payload” in addition to their values
(eliminating the payload when it is not necessary should be straightforward).

The limited heap interface is provided through a constructor, a push_back function that sifts
new elements through the structure, and (constant) iterators that allow access to individual
elements. All the rest of original vector functions are declared private, so that their inadvertent
use does not invalidate the heap property. Most of these functions, such as erase and
pop_back, are actually inapplicable to the heap structure. The only notable exception is
operator[], whose non-constant version may render the heap inconsistent; we block it
altogether as it is impossible to selectively allow only the constant version.

Whenever the push_back function decides to add a new item to the heap, it first uses
std::pop_heap to pop off the smallest element. The way pop_heap is implemented, it moves the

1 The complete code can be obtained from the Dr. Dobb’s Journal Web site at http://www.ddj.com/ftp/.

first (i.e., smallest) heap element to the last position (namely, vector[_n-1]), and then restores
the heap property. Subsequently, the new value is injected into this last position; using
vector::push_back would both unnecessarily grow the vector and include anew the element that
has just been removed by pop_heap. Ultimately, function std::push_heap is invoked to include
the newly added element into the heap.

Caveat: For various combinations of k and N, solution #2 (heap sort) may be asymptotically
more time-efficient than #3, but the modest memory requirements of the latter can hardly be
beaten. (Mathematically inclined readers will find out by complexity comparison that the

former solution is preferable when
N

N
k
k

log1log
<

−
, or roughly when k << N). Note also

that in both solutions elements are extracted from the heap in a sorted order. This might be a
benefit (if sorted order is actually desired), or a drawback (if stable2 operation is necessary).
In the latter case, the payload fields may be utilized to track the original element ordering.

using namespace std;

template<class _Key, class _T> class KMaxValues : public vector<pair<_Key, _T> > {
 typedef vector<pair<_Key, _T> > Base;

 int _n; /* maximum size allowed */

 /* Block access to extraneous functions inherited from std::vector,
 lest their invocation might invalidate heap properties. */
 using Base::assign; using Base::erase; using Base::insert;
 using Base::pop_back; using Base::resize; using Base::swap;
 using Base::operator[];using Base::iterator;

 struct greater : public binary_function<value_type, value_type, bool> {
 bool operator()(const value_type& x, const value_type& y) const
 { return (x.first > y.first); }
 };
public:
 explicit KMaxValues(int maxSize = 1) : _n(maxSize)
 { reserve(maxSize); /* preallocate storage */ }

 void push_back(const value_type& x) {
 if (size() < _n) {
 Base::push_back(x);
 push_heap(begin(), end(), greater());
 } else { /* maximum size reached */
 if (x.first < begin()->first)
 return; /* no need to add the element at all */

 /* delete the smallest element, then add the new one */
 pop_heap(begin(), end(), greater());
 (*this)[_n-1] = x; /* inserts the new element into the last position */
 push_heap(begin(), end(), greater()); /* restore the heap property */
 }
 }
};

Listing 1. Template-based implementation of limited heap.

2 Reminiscent of stable sort, stable operation in this context simply preserves the original relative order
of equivalent elements.

Other options
At this point you probably start wondering “Is the limited heap algorithm optimal? Is it the
best we can hope for? Can we really achieve the O(N) lower bound necessary for scanning the
input sequence?” It turns out that there are algorithms that can do this (alas, have we said that
there ain’t such thing as a free lunch?)

There are so-called selection algorithms that find the k-th largest (single) element in a
sequence3. Given such an element, the sequence can be trivially partitioned (in a single O(N)
pass) so that all the k largest elements are grouped together. The problem is, however, that
algorithms that work reasonably on average, might require as much as O(N2) time in the worst
case, while algorithms with guaranteed O(N) selection time are extremely slow in practice [1,
Chapter 10]. In either case, O(N) additional memory is required to store the entire sequence –
a considerable drawback when working "on-the-fly".

Summary
The big-O time complexity is very important in choosing an algorithm. However, in real life
one should not blindly select the algorithm that advertises the best complexity. Other
concerns, such as memory requirements, can often make a seemingly inferior algorithm
preferable in practice.

Sidebar (The Heap data structure)
Heap is a very simple but useful data structure, which allows you to enter a sequence of
elements in an arbitrary order and then retrieve them one by one in a sorted order. There are
naturally other data structures that can perform the same task, but heap is arguably the
simplest, most efficient and easiest to implement.

Basically, heap is a binary tree with two special properties:

Heap property: the value of each node is smaller than those of its sons. This effectively
implies that the root element is the smallest one, so it can be readily accessed in O(1). On the
other hand, finding the largest element is inefficient. It must reside in one of the leaves of the
tree (since if it had a child, it would not be the largest one), but in order to find it you must
painstakingly scan all the leaves.

Tree property: heap is an almost complete binary tree, that is, all the elements up to a certain
depth are present in the tree, except maybe for some elements at the lowermost level (see
Figure 1). The maximum depth of the heap tree is log2 n, where n is the total number of
nodes. Consequently, you don't need to use a tree to actually implement a heap – an array (or
a vector) will do. This way, for a node residing at index i, its two sons reside at indices 2*i+1
and 2*i+2, while its parent resides at (i-1)/2.

3 In computer science, a closely related value of the k-th smallest element is referred to as the k-th
order statistic of a sequence.

When a heap is embedded in an array as explained above, we can define its “last” element as
the very last element of the host array. Note that this element can be safely removed from the
heap without disturbing any of its properties. It is this observation that allows to efficiently
extract the smallest element from the heap – you simply remove the last element from the
heap, inject it in place of the smallest element (i.e., at the root), and "bubble" it down,
restoring the heap property for every node it encounters en route (Figure 2 illustrates this
process). The time complexity of this operation is bounded by the tree depth and equals O(log
n).

To insert a new element into the heap, you just insert it after the last array element, and
"bubble" it up similarly to restore the heap property. The complexity of this operation is also
O(log n).

Finally, an unsorted array can be converted into a heap (“heapified”) by performing the
"bubble" operations in a particular sequence. Interestingly, while the worst-case complexity
of any given "bubble" operation is O(log n), it can be shown [1] that all the operations
required for heapification together sum up to only O(n)!

And the best news is that you don't even need to implement any of the heap manipulation
functions, as they constitute an integral part of the C++ standard library [2]. The three heap
operations described above are realized by the STL functions std::pop_heap, std::push_heap and
std::make_heap, defined in the header file <algorithm>.

References
[1] T.H. Cormen, C.E. Leiserson and R.L. Rivest. “Introduction to Algorithms”,
 MIT Press, 1990.
[2] "Information Technology – Programming Languages – C++",
 International Standard ISO/IEC 14882-1998(E).

Figure 1: Tree property. Only the rightmost part of the
lowest level can be empty.

Tree D
epth

5

3 4

6 8

3

5 4

6 8

Figure 2: Restoring the heap property. Node 5 must be moved since it is larger than
both of its sons. It switches places with its smallest son, in this case the left one.
After the swap, node 5 is smaller than both of its sons (6 and 8), and the heap
property is completely restored.

About the authors
Evgeniy Gabrilovich is a Ph.D. student in Computer Science at the Technion – Israel
Institute of Technology. He is a member of the ACM and the IEEE. His interests involve
computational linguistics, information retrieval, and machine learning. He can be contacted at
gabr@cs.technion.ac.il.

Alex Gontmakher is a Ph.D. student in Computer Science at the Technion – Israel Institute
of Technology. His interests include parallel algorithms and constructed languages. He can be
reached at gsasha@cs.technion.ac.il.

