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We propose a methodology for building a robust query classification system that can identify
thousands of query classes, while dealing in real-time with the query volume of a commercial
Web search engine. We use a pseudo relevance feedback technique: given a query, we determine
its topic by classifying the Web search results retrieved by the query. Motivated by the needs of
search advertising, we primarily focus on rare queries, which are the hardest from the point of view
of machine learning, yet in aggregation account for a considerable fraction of search engine traffic.
Empirical evaluation confirms that our methodology yields a considerably higher classification
accuracy than previously reported. We believe that the proposed methodology will lead to better
matching of online ads to rare queries and overall to a better user experience.
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1. INTRODUCTION

In its 15 year lifetime, Web search had grown tremendously: it has simultaneously
become a factor in the daily life of maybe a billion people, and at the same time
a twenty billion dollar industry fueled by Web advertising. One thing, however,
has remained constant: people use very short queries. Various studies estimate the
average length of a search query between 2.4 and 2.7 words, which by all accounts
can carry only a small amount of information. Commercial search engines do a
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remarkably good job in interpreting these short strings, but they are not (yet!)
omniscient. Therefore, using additional external knowledge to augment the queries
can go a long way in improving the search results and the user experience.

At the same time, better understanding of query meaning has the potential of
boosting the economic underpinning of Web search, namely, online advertising,
via the sponsored search mechanism that places relevant advertisements alongside
search results. For instance, knowing that the query “SD450” is about cameras
while “nc4200” is about laptops can obviously lead to more focused advertisements
even if no advertiser has specifically bid on these particular queries. Advertising
lies at the heart of modern Web search monetization, and better understanding of
search queries is likely to result in more focused ads, eventually leading to better
user experience. Better leveraging of the ads mechanism can also lead search engines
to provide additional services to the searchers.

In this study we present a methodology for query classification, where our aim is
to classify queries onto a commercial taxonomy of Web queries with approximately
6000 nodes. Given such classifications, one can directly use them to provide better
search results as well as more focused ads. The problem of query classification is
extremely difficult owing to the brevity of queries. Observe, however, that in many
cases a human looking at the search query and the search results does remarkably
well in making sense of it. For instance, in the example above, sending the query
“SD450” to a Web search engine brings pages about Canon cameras, while “nc4200”
brings pages about Compaq laptops, hence to a human the intent is quite clear. Of
course, the sheer volume of search queries does not lend itself to human supervision,
and therefore we need alternate sources of knowledge about the world.

Search engines index colossal amounts of information, and as such can be viewed
as large repositories of knowledge. Following the heuristic described above, we
propose to use the search results themselves to gain additional insights for query
interpretation. To this end, we employ the pseudo relevance feedback paradigm,
and assume the top search results to be relevant to the query. Certainly, not all
results are equally relevant, and thus we use elaborate voting schemes in order to
obtain reliable knowledge about the query. For the purpose of this study we first
dispatch the given query to a general Web search engine, and collect a number of
the highest-scoring URLs. We crawl the Web pages pointed to by these URLs, and
classify these pages. Finally, we use these result-page classifications to classify the
original query. Our empirical evaluation confirms that using Web search results in
this manner yields substantial improvements in the accuracy of query classification.

Note that in a practical implementation of our methodology within a commer-
cial search engine, all indexed pages can be pre-classified using the normal text-
processing and indexing pipeline. Thus, at run-time we only need to run the voting
procedure, without doing any crawling or classification. This additional overhead
is minimal, and therefore the use of search results to improve query classification
is entirely feasible at run-time.

Another important aspect of our work lies in the choice of queries. The volume of
queries in today’s search engines follows the familiar power law, where a few queries
appear very often while most queries appear only a few times. While individual
queries in this long tail are rare, together they account for a considerable mass of all
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searches. Furthermore, the aggregate volume of such queries provides a substantial
opportunity for income through on-line advertising.1

For frequent queries, searching and advertising platforms can be trained to pro-
vide good results, including auxiliary data such as maps, shortcuts to related struc-
tured information, successful ads, and so on. “Tail” queries, however, simply do not
have enough occurrences to allow statistical learning on a per-query basis. There-
fore, we need to aggregate such queries in some way, and to reason at the level of
aggregated query clusters. A natural choice for such aggregation is to classify the
queries into a topical taxonomy. Knowing which taxonomy nodes are most relevant
to the given query will aid us to provide the same type of support for rare queries
as for frequent queries. Consequently, in this work we focus on the classification of
rare queries, whose correct classification is likely to be particularly beneficial.

The main contributions of this paper are as follows. First, we build the query
classifier directly for the target taxonomy, instead of using a secondary auxiliary
structure; this greatly simplifies taxonomy maintenance and development. The
taxonomy used in this work is two orders of magnitude larger than that used in
prior studies. Empirical evaluation demonstrates that our methodology for using
external knowledge achieves greater improvements than those previously reported.
Since our taxonomy is considerably larger, the classification problem we face is
much more difficult, making the improvements we achieve particularly notable. We
also report the results of a thorough empirical study of different voting schemes
and different depths of knowledge (e.g., using search summaries vs. entire crawled
pages). We found that using the full text of search hits yields deeper knowledge
and leads to greater improvements than mere summaries. This result is in contrast
with prior findings in query classification [Shen et al. 2006], but is supported by
research in mainstream text classification [Gabrilovich and Markovitch 2007].

This paper is organized as follows. Section 2 surveys the related work. Section 3
provides background on sponsored search advertising. We present our methodology
for query classification using Web search in Section 4. The results of empirical
evaluation are reported in Section 5. Finally, we discuss the obtained results in
Section 6.

2. RELATED WORK

In its abstract form, query classification can be regarded as a multi-class categoriza-
tion problem, which has been extensively studied in the machine learning literature.
If we regard each query as a short text segment, then text categorization techniques
can be easily applied. The standard feature representation in text categorization
is the so-called bag-of-word representation, where the features are the word counts
in the text document. For general text categorization problems, this simple repre-
sentation often achieves state-of-the-art performance. Standard text categorization
methods that can be used with this feature representation include nearest neighbor
[Yang 1999], naive Bayes [McCallum and Nigam 1998], SVM [Joachims 1998], and

1In the above examples, “SD450” and “nc4200” represent gadget models that existed on the
market for a long time, and hence there are advertisers placing ads on these queries. However, in
this paper we mainly deal with rare queries that are extremely difficult to match to relevant ads
because normally no advertisers specifically bid on those queries.
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more generally regularized linear classification methods [Zhang and Oles 2001]. See
[Sebastiani 2002] for a comprehensive survey of text categorization techniques.

In text categorization, each category is often associated with a number of words
that are indicative of the category. Since text documents often contain at least a few
hundred words, a number of indicative words will likely appear in each document.
It is thus relatively easy for a standard machine learning method to find most of
these words even with a small amount of training data. A weighted average of
the words will give a good estimate of whether a document belongs to a certain
category or not. The situation changes dramatically for query classification, where
each query often contains only a very small number of words. It is therefore very
difficult for standard machine learning methods to find many indicative words for
a category from the training queries. In fact, many words that appear in the test
queries do not occur in the training queries at all – this problem is also referred to
as the data-sparsity problem in natural language processing. For this reason, the
simple bag-of-word representation for text categorization does not work well for
query classification.

Even though the average length of search queries is steadily increasing over time,
a typical query is still shorter than 3 words. Consequently, many researchers have
studied possible ways to enhance queries with additional information.

One important direction in enhancing queries is through query expansion. This
can be done either using electronic dictionaries and thesauri [Voorhees 1994], or via
relevance feedback techniques [Manning et al. 2008] that make use of a few top-
scoring search results. Early work in information retrieval concentrated on manually
reviewing the returned results [Salton and Buckley 1990; Rocchio 1971]. However,
the sheer volume of queries nowadays does not lend itself to manual supervision,
and hence subsequent works focused on pseudo relevance feedback, which basically
assumes top returned results to be relevant [Xu and Croft 2000; Mitra et al. 1998;
Efthimiadis and Biron 1994; Robertson et al. 1995].

More recently, studies in query augmentation focused on classification of queries,
assuming such classifications to be beneficial for more focused query interpreta-
tion. Indeed, Kowalczyk et al. [2004] found that using query classes improved the
performance of document retrieval.

Studies in the field pursue different approaches for obtaining additional informa-
tion about the queries. Beitzel et al. used semi-supervised learning [2005] as well
as unlabeled data [2005; 2007]. Gravano et al. [2003] classified queries with respect
to geographic locality in order to determine whether their intent is local or global.

The 2005 KDD Cup on Web query classification inspired yet another line of re-
search, which focused on enriching queries using Web search engines and directories
[Li et al. 2005; Shen et al. 2005; Shen et al. 2006; Kardkovacs et al. 2005; Vogel et al.
2005]. The KDD task specification provided a small taxonomy (67 nodes) along
with a set of labeled queries, and posed a challenge to use this training data to build
a query classifier. Several teams used the Web to enrich the queries and provide
more context for classification. The main research questions of this approach are
(1) how to build a document classifier, (2) how to translate its classifications into
the target taxonomy, and (3) how to determine the query class based on document
classifications.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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The winning solution of the KDD Cup [Shen et al. 2005] proposed using an ensem-
ble of classifiers in conjunction with searching multiple search engines. To address
issue (1) above, their solution used the Open Directory Project (ODP) to produce
an ODP-based document classifier. The ODP hierarchy was then mapped into the
target taxonomy using word matches at individual nodes. A document classifier
was built for the target taxonomy by using the pages in the ODP taxonomy that
appear in the nodes mapped to the particular target node. Thus, Web documents
were first classified with respect to the ODP hierarchy, and their classifications were
subsequently mapped to the target taxonomy for query classification.

Compared to this approach, we solved the problem of document classification
directly in the target taxonomy by using the queries to produce document classifier
as described in Section 4. This simplifies the process and removes the need for
mapping between taxonomies. This also streamlines taxonomy maintenance and
development. Using this approach, we were able to achieve good performance in a
very large scale taxonomy. We also evaluated a few alternatives for how to combine
individual document classifications when actually classifying the query.

In a follow-up paper [Shen et al. 2006], Shen et al. proposed a framework for
query classification based on bridging between two taxonomies. In this approach,
the problem of not having a document classifier for Web results is solved by using
a training set available for documents with a different taxonomy. For this, an
intermediate taxonomy with a training set (ODP) is used. Then several schemes are
tried that establish a correspondence between the taxonomies or allow for mapping
of the training set from the intermediate taxonomy to the target taxonomy. As
opposed to this, we built a document classifier for the target taxonomy directly,
without using documents from an intermediate taxonomy. While we were not able
to directly compare the results due to the use of different taxonomies (we used a
much larger taxonomy), our precision and recall results are consistently higher even
over the hardest query set.

There have also been a number of studies that studied query classification as
a means for accomplishing other tasks. Beitzel et al. [2004] used query classifica-
tion techniques to analyze a large-scale log of real-life Web queries. Sahami et al.
[2004] explored classification of Web queries onto the nodes of the Open Directory
Project (www.dmoz.org), with the aim of eventually using the query classification
capabilities for improving the accuracy of Web search. Lu et al. [2006] used machine
learning methods to identify navigational queries (where the users’ information need
is to find a URL / home page for the entity described in the query).

3. DIGRESSION: THE BASICS OF SPONSORED SEARCH

This research has been motivated by the need to match Web search queries to more
relevant ads. Therefore, in this section we provide a brief introduction to some basic
concepts of Web advertising. Sponsored search (or paid search) advertising is placing
textual ads on the result pages of Web search engines, with ads being driven by the
originating query. All major search engines (Google, Yahoo!, and MSN) support
such ads and act simultaneously as a search engine and an ad agency. Sponsored
search is an interplay of three players:

—The advertiser provides the supply of ads. Usually the activity of the adver-
ACM Journal Name, Vol. V, No. N, Month 20YY.
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tisers are organized around campaigns which are defined by a set of ads with a
particular temporal and thematic goal (e.g., sale of digital cameras during the
holiday season). As in traditional advertising, the goal of the advertisers can be
broadly defined as the promotion of products or services.

—The search engine/ad agency is a mediator between the advertiser and the
user, selecting the ads that are put on the search result pages.

—Users visit the search engine to perform queries and interact with the ads.

Sponsored search usually falls into the category of direct marketing (as opposed
to brand advertising), that is advertising whose aim is a “direct response” where
the effect of a campaign is measured by the user reaction. One of the advantages
of online advertising in general and contextual advertising in particular is that,
compared to the traditional media, it is relatively easy to measure the user response.
Usually the desired immediate reaction is for the user to follow the link in the ad
and visit the advertiser’s Web site and the prevalent financial model is that the
advertiser pays a certain amount for every click on the advertisement (PPC).

In most networks, the amount paid by the advertiser for each click is determined
by an auction process where the advertisers place bids on a search phrase, and their
position in the tower of ads displayed in conjunction with the result is determined
by their bid. Thus each ad is annotated with one or more bid phrases. The bid
phrase is a concise description of target ad audience as determined by the advertiser.
In addition to the bid phrase, an ad is also characterized by a title usually displayed
in a bold font, and an abstract or creative, which is the few lines of text, usually
fewer than 120 characters.

In general, clicks bring benefits to the ad agency by providing revenue, and to
the advertiser by bringing traffic to the target Web site. The revenue of the ad
agency, given a query q, can be estimated as

R =
∑

i=1..k

P (click|q, ai)price(ai, i),

where k is the number of ads displayed on the result page for query p and price(ai, i)
is the click-price of the current ad ai at position i. The price in this model depends
on the set of ads presented on the search result page. A discussion of bidding and
placement mechanisms is beyond the scope of this paper [Moran and Hunt 2005]

It is important to note that many searches do not explicitly use phrases that
someone bids on. Consequently, advertisers also buy “broad” matches, that is,
they pay to place their advertisements on queries that constitute some modification
of the desired bid phrase. In broad match, several syntactic modifications can
be applied to the query to match it to the bid phrase, e.g., dropping or adding
words, synonym substitution, etc. These transformations are based on rules and
dictionaries. As advertisers tend to cover high-volume and high-revenue queries,
broad-match queries fall into the tail of the distribution with respect to both volume
and revenue.

4. METHODOLOGY

Our methodology has two main phases. In the first phase, we construct a document
classifier for classifying search results into the same taxonomy into which queries
ACM Journal Name, Vol. V, No. N, Month 20YY.
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are to be classified. In the second phase, we develop a query classifier that invokes
the document classifier on search results, and uses the latter to perform query
classification.

Figure 1 gives an overview of our proposed query classification architecture. This
architecture has two distinct components:

—The Offline component is invoked once for all future query classification tasks.
This step is performed at crawling time while building the index of a search
engine. In this phase, every page that is about to be added to the search engine
index is first classified. This way, when we later classify a query based on its
search results (see Section 4.2), the classifications of all individual search results
are already available and need not be computed “on the fly”.
Having all indexed pages pre-classified offers substantial time savings at runtime.
However, a search engine is already an extremely complex system, so that extend-
ing it to perform Web page classification at crawling time is a difficult engineering
task. Consequently, for the experiments described in this paper, we used a sim-
pler architecture that actually classifies search results on the “as needed” basis
(see Figure 6 in Section 5). We are currently working on incorporating classifica-
tion of all indexed pages into the search engine infrastructure, in order to allow
fast classification of incoming queries in real time.

—The Online component performs actual query classification. Given a query, it
sends it to the search engine to obtain a (pre-configured) number of search results.
Then, classifications of individual search results are merged through a voting
scheme that computes several classifications for the input query.

4.1 Building the document classifier

In this work we used a commercial classification taxonomy of approximately 6000 no-
des used in a major US search engine (see Section 5.1). Human editors populated
the taxonomy nodes with labeled examples that we used as training instances to
learn a document classifier in the offline phase.

Given a taxonomy of this size, the computational efficiency of classification is a
major issue. Few machine learning algorithms can efficiently handle so many differ-
ent classes, each having hundreds of training examples. Suitable candidates include
the nearest neighbor and the Naive Bayes classifier [Duda and Hart 1973], as well
as prototype formation methods such as Rocchio [Rocchio 1971] or centroid-based
[Han and Karypis 2000] classifiers. A recent study [Gabrilovich and Markovitch
2007] showed centroid-based classifiers to be both effective and efficient for large-
scale taxonomies; consequently, we used a centroid classifier in this work.

Each centroid is defined as a sum of the TF.IDF values of the terms, normalized
by the number of documents in the class ~cj = 1

|Cj |
∑

~d∈Cj

~d

‖~d‖ , where ~cj is the
centroid for class Cj , and d iterates over the documents that belong to this class.
Classification is based on the cosine of the angle between the document and each
of the centroids:

Cmax = arg max
Cj∈C

~cj

‖~cj‖ ·
~dj

‖~dj‖
= arg max

Cj∈C

∑
i∈|F | c

i· di

√∑
i∈|F |(ci)2

√∑
i∈|F |(di)2

(1)
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where F is the set of features. Score are normalized by the document and class
length to make them comparable. The terms ci and di represent the weight of the
i-th feature in the class centroid and the document, respectively. These weights
are based on the standard “ltc” TF.IDF function (logarithmic term frequency and
inverse document frequency, followed by cosine normalization) [Salton and Buckley
1988].

4.2 Query classification by search

Having developed a document classifier for the query taxonomy, we now turn to
the problem of computing classification(s) for a given query based on the initial
search results it yields. Let us assume that there is a set of documents D =
d1 . . . dm indexed by the search engine. The search engine can then be represented
by a function ~f = similarity(q, d) that quantifies the affinity between query q and
document d.

Query classification is determined by first evaluating conditional probabilities of
all possible classes P (Cj |q), and then selecting the alternative with the highest
probability Cmax = arg maxCj∈C P (Cj |q). Our goal is to estimate the conditional
probability of each possible class using the search results initially returned by the
query. We use the following formula that incorporates classifications of individual
search results:

P (Cj |q) =
∑

d∈D

P (Cj |q, d)·P (d|q) =
∑

d∈D

P (q|Cj , d)
P (q|d)

·P (Cj |d)·P (d|q).

We assume that P (q|Cj , d) ≈ P (q|d), that is, the probability of a query given a
ACM Journal Name, Vol. V, No. N, Month 20YY.
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document can be determined without knowing the class of the query. This is the
case for the majority of queries that are unambiguous. Counter examples are queries
like ‘jaguar’ (animal and car brand) or ‘apple’ (fruit and computer manufacturer),
but such ambiguous queries can not be classified by definition, and usually consist
of common words. In this work we concentrate on rare queries, that tend to contain
rare words, be longer, and match fewer documents; consequently in our setting the
above assumption mostly holds. Using this assumption, we can write

P (Cj |q) =
∑

d∈D

P (Cj |d)·P (d|q). (2)

The conditional probability of a classification for a given document P (Cj |d) is
estimated using the output of the document classifier (Section 4.1). P (d|q) is harder
to compute, and in what follows we consider alternative ways for modeling it.

One simple way to compute P (d|q) is to define P (d|q) = 1 if d appears in the top
K search results for q, and P (d|q) = 0 otherwise; this is reminiscent of the standard
relevance feedback approach. Using this definition, we obtain the following simple
voting formula P (Cj |q) =

∑
d∈DK(q) P (Cj |d), where DK(q) is a set of top K search

results for q. Here, we first classify each of the top search results, and then use
their classes to determine (one or several) best classes for the query. We call this
method “voting” because query classes are effectively “voted for” by the classes of
the search results, based on the strength of the classes in each document.

The above method essentially eliminates all information about the document
order in the ranked list of search results, hence it is an interesting research question
whether taking the ranks into account would ultimately lead to a more accurate
estimation of P (Cj |q). This question is addressed in the next sections.

4.3 Classification-based relevance model

In this section we develop a document relevance model based on document and
query classes alone (without considering other features of documents and queries,
such as individual words). Given a ranked list of documents from the search engine,
we then optimize P (Cj |q) so that the output of this restricted relevance model is
similar to that produced by the search engine.

Given a document d and query q, we denote by R(d, q) the relevance of d to q.
This value indicates how relevant document d is to query q, and can be used to
rank documents for a given query. We now define RC(d, q), which approximates
R(d, q) using a taxonomy of classes:

R(d, q) ≈ RC(d, q) =
∑

Cj∈C

w(Cj)s(Cj , d)s(Cj , q). (3)

The right hand-side expresses how we use the classification scheme C to rank
documents, where s(c, d) is a scoring function that specifies the likelihood of d
belonging to class c, and s(c, q) is a scoring function that specifies the likelihood
of q being in class c. The value w(c) is a weighting term for class c, indicating the
importance of class c in the relevance formula.

This relevance function is an adaptation of the traditional word-based retrieval
approach to class-based features. To observe this, consider what would happen if
Cj referred to word occurrence: s(Cj , d) would stand for (some function of) the
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word count of Cj in d, s(Cj , q) — the word count of Cj in q, and w(Cj) — the
IDF term weighting for the corresponding word. This way, the method given by
(3) becomes the standard TF.IDF retrieval rule.

If we take s(Cj , d) = P (Cj |d), s(Cj , q) = P (Cj |q), and w(Cj) = 1/P (Cj), and
assume that q and d are independently generated given a hidden concept C, then

RC(d, q) =
∑

Cj∈C

P (Cj |d)P (Cj |q)
P (Cj)

=
∑

Cj∈C

P (Cj |d)P (q|Cj)
P (q)

=
∑

Cj∈C

P (q|Cj)P (d|Cj)P (Cj)
P (d)P (q)

.

Assuming the query represents the essence of the class for the purpose of doc-
ument ranking, we get P (d|Cj) = P (d|q). Upon this substitution, the previous
equation transforms into

RC(d, q) =
∑

Cj∈C

P (q|Cj)P (Cj)P (d|q)
P (d)P (q)

=
P (d|q)

P (d)P (q)

∑

Cj∈C

P (q|Cj)P (Cj)

=
P (d|q)

P (d)P (q)
P (q)

=
P (q|d)
P (q)

.

That is, documents are ranked according to P (q|d). This relevance model has
been employed in various statistical language modeling techniques for information
retrieval. The intuition can be described as follows. We assume that a user searches
for document d by constructing query q: the user first picks a concept Cj according
to the weights P (Cj |d), and then constructs a query q with probability P (q|Cj)
based on the concept Cj . For this query generation process, the documents can be
ranked based on the likelihood of the observed query to be generated from each
document.

It should be mentioned that in our case, each query and document can have
multiple categories. For simplicity, we denote by Cj a random variable indicating
whether q belongs to category Cj . We use P (Cj |q) to denote the probability of
q belonging to category Cj . Here the sum

∑
Cj∈C P (Cj |q) may not equal to one

because the categories are not mutually exclusive, and hence a query may be labeled
with more than one category. We then consider the following ranking formula:

RC(d, q) =
∑

Cj∈C

P (Cj |d)P (Cj |q). (4)
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As before, we assume the estimation of P (Cj |d) is based on an existing text-
categorization system (Section 4.1).

In order to obtain estimates of the unknown parameters P (Cj |q), we use Web
search results, and assume that the ranking formula (4) gives good ranking for
search. That is, we assume that top results ranked by a good Web search engine
should also be ranked highly by this formula. Therefore, given query q, and top K
result pages d1(q), . . . , dK(q) from a major search engine, we fit parameters P (Cj |q)
so that RC(di(q), q) has high scores for i = 1, . . . , K. It should be mentioned
that using this method we can only compute relative strength of P (Cj |q), but
not the scale, because scale does not affect the ranking. Moreover, it is possible
that the parameters estimated may be of the form g(P (Cj |q)) for some monotone
function g(·) of the actually conditional probability g(P (Cj |q)). Although this
may change the meaning of the unknown parameters that we estimate, it does not
affect the quality of using the formula to rank documents. Nor does it affect query
classification with appropriately chosen thresholds. In what follows, we consider
two methods to compute the classification information P (Cj |q).
4.4 The voting method

First, we show how our classification-based relevance model can be used to derive
the simple voting mechanism presented at the end of Section 4.2.

We would like to compute P (Cj |q) so that RC(di(q), q) are high for i = 1, . . . ,K
and RC(d, q) are low for a random document d. Assume that the vector [P (Cj |d)]Cj∈C

is random for an average document, then the condition that
∑

Cj∈C P (Cj |q)2 is
small implies that RC(d, q) is also small averaged over d. Thus, a natural method is
to maximize

∑K
i=1 wiRC(di(q), q) subject to

∑
Cj∈C P (Cj |q)2 being

small, where wi are weights associated with each rank i:

max
[P (·|q)]


 1

K

K∑

i=1

wi

∑

Cj∈C

P (Cj |di(q))P (Cj |q)− λ
∑

Cj∈C

P (Cj |q)2

 ,

where we assume
∑K

i=1 wi = 1, and λ > 0 is a tuning regularization parameter.
The optimal solution is

P (Cj |q) =
1
2λ

K∑

i=1

wiP (Cj |di(q)). (5)

Since both P (Cj |di(q)) and P (Cj |q) belong to [0, 1], we may just take λ = 0.5 to
align the scale. In our experiment, we will simply take uniform weights wi = 1/K.

4.5 Generalized voting

Although the voting method in (5) is simple and effective (as we will see in exper-
iments), the choice of the weights wi is rather simple. However, it is reasonable
to assume that higher ranked documents di (with small i) that are more relevant
to the query q should be given a higher weight than lower ranked documents that
are less relevant to the query q. That is, in order to optimize (5), we should assign
different wi values for different rank positions i.
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Following this argument, a more complex strategy is to let w depend both on d
and on q. We may consider the following generalized linear model:

η(P (Cj |q)) =
∑

d

w(d, q)g(P (Cj |d)), (6)

where g(x) is a certain transformation of x; η(x) is an monotone increasing function
of x, often referred to as the link function in the statistical literature.

In this general formulation, w(d, q) may depend on factors other than the rank
of d in the search engine results for q. For example, it may be a function of r(d, q)
where r(d, q) is the relevance score returned by the underlying search engine.

In order to apply (6), it is necessary to know the weight w(d, q) and the trans-
formation g(P (Cj |d)). These parameters can be learned using machine learning
techniques, if we are provided with a training set of hand-labeled category/query
pairs (Cj , q), with binary label y indicates whether query q belongs to category Cj .
In the experimental section, we apply this idea to a simple model. Specifically, we
discretize the quality score r(d, q) of a query/document pair into {high, medium,
low}, represented by integers {1, 2, 3} respectively. We then learn the three weights
w1, w2, and w3, corresponding to these three quality grades. We do not learn
the transformation g(·), and simply set it to be the identity. Moreover, we choose
the link function η(x) = ln(x/(1 − x)) which maps probability in range (0, 1) into
the full real line (−∞,∞). In statistics, this link function corresponds to logistic
regression. The formula (6) then becomes

ln
P (Cj |q)

1− P (Cj |q) =
∑

d

wr(d,q)P (Cj |d). (7)

In order to estimate the model parameter w, we need a set of labeled training data
S = {(q, Cj , y)}, where the label y = 1 if q belongs to Cj , and y = −1 otherwise.
We can use the following logistic regression method to estimate w = [w1, w2, w3] in
(7):

[w1, w2, w3] = arg min
w

∑

(q,Cj ,y)∈S

ln
(
1 + e−

∑
d

wr(d,q)P (Cj |d)y
)

. (8)

4.6 Discriminative classification

Although the method described in Section 4.5 can be used to estimate parameters
in a general weighting formula such as (6), it requires a set of hand-labeled training
data, where significant human effort is needed to obtain label y (i.e., whether a
query belongs to a certain category or not). This section describes another method
which does not require any human labeled training data. The method is a variation
of the voting method in Section 4.4 but with a discriminative classification model.

In this method, we assume, similar to (4), that the search engine relevance func-
tion can be approximated by

RC(di(q), q) =
∑

Cj∈C

P (Cj |q)P (Cj |di(q)) = w · xi(q),

where xi(q) = [P (Cj |di(q))]Cj∈C is the feature vector that is known, and w =
[P (Cj |q)]Cj∈C is the weight vector that needs to be estimated.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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We assume that RC(d, q) is a good approximation to the search engine relevance
function, which means that it approximately preserves the order (or preference)
of search engine results. That is, we would like to impose the condition that if
i < j, then RC(di(q), q) > Rc(di(q), q) (document di(q) has a higher relevance than
document dj(q)). Conceptually this is a very reasonable assumption; however, it
may not hold precisely in practice. Although it would be nice to verify to what
degree this assumption holds, our data does not provide enough information to do
so. Therefore, the only verification in this paper is to see whether algorithms derived
from this assumption give good results, which we study using experiments. In this
sense, its main purpose is rather similar to other statistical assumptions, such as
the conditional independence assumption in naive Bayes classification, or the bag-
of-word assumption in text modeling—even though it is clear such assumptions do
not hold precisely in practice, they are still useful because they lead to interesting
algorithms.

We can now treat the problem of estimating w = [P (Cj |q)] as a preference
learning problem which requires the weight vector w to preserve the preference
relationship: i < j implies w · xi > w · xj . A more specific and simpler method,
which we employ in this paper, is to treat the problem of estimating w = [P (Cj |q)]
as a classification problem. For each q, we label di(q) for i = 1, . . . ,K as positive
data, and the remaining documents as negative data. That is, we assign label
yi(q) = 1 for di(q) when i ≤ K, and label yi(q) = −1 for di(q) when i > K. This
is equivalent to enforcing the preference relationship w · xi > w · xj if i ≤ K and
j > K. Note that although we have labels yi(q), they are automatically obtained
from search engine results without any human effort. This is an advantage over the
method in Section 4.5.

In this classification formulation, the values P (Cj |d) (Cj ∈ C) are the features for
the linear classifier, and w = [P (Cj |q)] is the weight vector, which can be estimated
using any linear classification method. In this paper, we consider estimating w
using logistic regression [Santner and Duffy 1989] as follows:

P (·|q) = arg min
w

∑

i

ln
(
1 + e−w·xi(q)yi(q)

)
.

That is, the desired probability estimate P (Cj |q) for each Cj ∈ C is a coefficient of
the above logistic regression solution.

5. EVALUATION

In this section, we evaluate our methodology that uses Web search results for im-
proving query classification.

5.1 Taxonomy

Our choice of taxonomy was guided by a Web advertising application. Since we
want the classes to be useful for matching ads to queries, the taxonomy needs
to be elaborate enough to facilitate ample classification specificity. For example,
classifying all medical queries into one node will likely result in poor ad matching, as
both “sore foot” and “flu” queries will end up in the same node. The ads appropriate
for these two queries are, however, very different. To avoid such situations, the
taxonomy needs to provide sufficient discrimination between common commercial
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Fig. 2. Taxonomy statistics: number of categories per level.

topics. Therefore, in this paper we employ an elaborate taxonomy of approximately
6000 nodes, arranged in a hierarchy with median depth 5 and maximum depth 9.

The taxonomy has been populated with labeled training examples that were bid
phrases of actual ads. Ideally, it is, of course, preferable to have labeled training
documents from the same distribution from which documents to be classified are
drawn. Since our method classifies Web search results, labeled training examples
should ideally also be Web pages. It is, however, prohibitively expensive to manually
label a large enough set of Web pages at the resolution we need (i.e., to populate
a taxonomy of 6,000 nodes). It is substantially cheaper to label short bid phrases
rather than long documents. Using labeled bid phrases of ads is also particularly
suitable for our application, since our research is motivated by the need to match
queries to more relevant ads.

The taxonomy has been populated by human editors using keyword suggestions
tools similar to the ones used by ad networks to suggest keywords to advertisers.
After initial seeding with a few queries, using the provided tools a human editor
can add several hundreds queries to a given node, which were used as a training
set. A small fraction of queries have been assigned to more than one category.2

Nevertheless, it has been a significant effort to develop a taxonomy of a magnitude of
several person-years. A similar-in-spirit process for building enterprise taxonomies
via queries has been presented in [Gates et al. 2005]. However, the details and
tools are completely different. Figures 2 and 3 show pertinent statistics about the
structure of the taxonomy, and Figures 4 and 5 show statistics about the labeled
examples used to train the classifier described in Section 4.1.

2Some queries were assigned to more than one category because they had several equally impor-
tant facets. For example, a query about antivirus software for Linux could be simultaneously as-
signed to categories “Computing/Computer Security/Malicious Software Prevention and Elimina-
tion/Virus Utilities/Anti Virus Utilities - Linux” and “Computing/Computer Software/Software
Utilities/Security Software/Firewalls/Firewalls - Linux”. Here, the former classification empha-
sizes the security application, and the latter—the fact that the application is implemented in
software rather than in hardware.
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Fig. 3. Taxonomy statistics: fanout of non-leaf nodes.
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Fig. 4. Taxonomy statistics: number of training examples (queries) per node.
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Fig. 5. Taxonomy statistics: number of training examples (queries) per level.
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5.2 Data sets

We used two representative sets of 1000 queries. Both sets contain queries that
cannot be directly matched to advertisements, that is, none of the queries contains
a bid phrase (this means we eliminated practically all popular queries).

The first set of queries can be matched to at least one ad using broad match as
described above. Queries in the second set cannot be matched even by broad match,
and therefore the search engine used in our study does not currently display any
advertising for them. In a sense, these are even more rare queries and further away
from common queries. As a measure of query rarity, we estimated their frequency
in a month worth of query logs for a major US search engine; the median frequency
was 1 for queries in Set 1 and 0 for queries in Set 2.

The queries in the two sets differ in their classification difficulty. In fact, queries
in Set 2 are difficult to interpret even for human evaluators. Queries in Set 1 have
on average 3.50 words, with the longest one having 11 words; queries in Set 2 have
on average 4.39 words, with the longest query of 81 words. Recent studies estimate
the average length of Web queries to be just under 3 words3, which is lower than
in our test sets. As another measure of query difficulty, we measured the fraction
of queries that contain quotation marks, as the latter assist query interpretation
by meaningfully grouping the words. Only 8% queries in Set 1 and 14% in Set 2
contained quotation marks.

The queries in the two test sets, Set 1 and Set 2, are different from the set
of labeled examples used to train the classifier described in Section 4.1, for two
reasons. First, in order to have a test set that is disjoint from the training set.
Second, in this study we are primarily interested in classifying rare queries, while
the taxonomy has been populated with sufficiently frequent queries.

5.3 Methodology and evaluation metrics

The two sets of queries were classified into the target taxonomy using the techniques
presented in section 4. Based on the confidence values assigned, the top 3 classes
for each query were presented to human evaluators. These evaluators were trained
editorial staff who possessed knowledge about the taxonomy. The editors considered
every query-class pair, and rated them on the scale 1 to 4, with 1 meaning the
classification is highly relevant and 4 meaning it is irrelevant for the query. About
2.4% queries in Set 1 and 5.4% queries in Set 2 were judged to be unclassifiable (e.g.,
random strings of characters), and were consequently excluded from evaluation. To
compute evaluation metrics, we treated classifications with ratings 1 and 2 to be
correct, and those with ratings 3 and 4 to be incorrect. For each query, the human
judges assessed the quality of up to 3 top-scoring classes assigned according to
Equation (1), which were produced by 4 different instantiations of the classifier
(the four instantiations different by the parameters discussed in the next section).
This process required collecting up to 2,000 x 3 x 4 = 24,000 judgments. After
excluding the unclassifiable queries as well as duplicate classifications produced by
the different algorithms, we have obtained 21,260 judgments for query-class pairs.

3http://www.rankstat.com/html/en/seo-news1-most-people-use-2-word-phrases-in-
search-engines.html
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Fig. 6. Query classification architecture (prototype).

Three human judges participated in the experiment, however, each query-class pair
was judged by a single person owing to cost considerations. It should be noted
that the judges were highly trained, and their inter-editor agreement measured on
similar tasks in the past was over 70%.

We used standard evaluation metrics: precision, recall, and micro-F1. Precision is
the proportion of actual positive class members returned by the classifier among all
the predicted positive class members returned. Recall is the proportion of predicted
positive members among all actual positive class members in the result set.4 Since
we aim to maximize both precision and recall, a combined measure of the two
is useful to evaluate the overall performance of the classifier. F1 measure is the
harmonic mean of precision P and recall R, defined as F1 = 2 ∗ P ∗ R/(P + R).
To compute micro-averaged F1, both precision and recall are computed for the
entire test collection (rather than individually for different categories, as would be
the case for macro-averaging). In what follows, we plot precision-recall graphs for
all the experiments. For comparison with other published studies, we also report
precision and F1 values corresponding to complete recall (R = 1).

As explained in Section 4, query classification would be most efficient if all the
pages in the search index have been pre-classified. To achieve this aim, however, it
would be necessary to significantly extend the crawling infrastructure of the search
engine to perform Web page classification at crawling time. Since this mechanism
was not available at the time of our study, we instead opted to build our prototype
that classifies search results for each query “on the fly”. Figure 6 outlines the
prototype infrastructure we used in our work.

5.4 Results

We compared our method to a baseline query classifier that does not use any ex-
ternal knowledge. Our baseline classifier expanded queries using standard query
expansion techniques, grouped their terms using a phrase recognizer, boosted cer-
tain phrases in the query based on their statistical properties, and performed clas-
sification using the nearest-neighbor approach. The same training data was used
for the baseline as for the proposed method. This baseline classifier is actually a
production version of the query classifier running in a major US search engine.

4When computing recall, we treat the set of all correct classes among these 3 judged ones for each
query as corresponding to full recall. Therefore, the recall in the figures can actually reach 1.0 (=
100% recall).
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Fig. 7. The effect of external knowledge (merged Set 1 and Set 2).

In our experiments, we varied values of pertinent parameters that characterize
the exact way of using search results. In what follows, we start with the general
assessment of the effect of using Web search results supplied by two different major
US search engines (henceforth denoted as A and B). In what follows, Figure 7 shows
the results using both search engines, while the other figures show the results using
only engine B. We then proceed to exploring more refined techniques, such as
using only search summaries versus actually crawling the returned URLs. We also
experimented with using different numbers of search results per query, as well as
with varying the number of classifications considered for each search result.

5.4.1 The effect of external knowledge. Queries by themselves are very short
and difficult to classify. We use top search engine results in the form of either
summaries or full text pages of the top hits for collecting background knowledge
for queries. We employed two major US search engines, and used their results in
two ways, either only summaries or the full text of crawled result pages. Figure 7
and Table I show that such extra knowledge considerably improves classification
accuracy.

5.4.2 Aggregation techniques. There are two major ways to use search results
as additional knowledge. First, individual results can be classified separately, with
subsequent voting among individual classifications. Alternatively, individual search
results can be bundled together as one meta-document and classified as such using
the document classifier. Table II and Figures 8 and 9 present the results of these
two approaches for classifying search results individually versus concatenating them
together into a single meta-document. When full-text pages are used, the technique
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Engine Context Precision F1 Precision F1

Set 1 Set 1 Set 2 Set 2

A full-page 0.72 0.84 0.509 0.721

B full-page 0.706 0.827 0.497 0.665

A summary 0.586 0.744 0.396 0.572

B summary 0.645 0.788 0.467 0.638

Baseline 0.534 0.696 0.365 0.536

Table I. The effect of using external knowledge (Precision and F1 are computed at full recall).
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Fig. 8. Voting vs. bundling (Set 1).

using individual classifications of search results evidently outperforms the bundling
approach by a wide margin. However, in the case of summaries, bundling together
is found to be consistently better than individual classification. This is because
summaries by themselves are too short to be classified correctly individually, but
when bundled together they are much more stable. In query Set 2, the difference
between the techniques is even more pronounced. As can be seen in Figure 9, for
full pages individual voting outperforms bundled aggregation by as much as 25%,
while in the case of summaries, bundling is better by about 10%.

5.4.3 Full page text vs. summary. To summarize the two preceding sections,
background knowledge for each query is obtained by using either the full-page text
or only the summaries of the top search results. Full page text was found to be
more useful in conjunction with voted classification, while summaries were found
to be useful when bundled together. The best results overall were obtained with
full-page results classified individually, with subsequent voting used to determine
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Fig. 9. Voting vs. bundling (Set 2).

Setting Context Precision F1 Precision F1

Set 1 Set 1 Set 2 Set 2

Bundled full-page 0.678 0.811 0.492 0.662

Bundled summary 0.665 0.801 0.478 0.648

Voting full-page 0.706 0.828 0.497 0.665

Voting summary 0.645 0.788 0.467 0.638

baseline 0.534 0.696 0.365 0.536

Table II. Aggregation: Bundling vs. individual voting (Precision and F1 are computed at full
recall).

the final query classification. This observation differs from findings by Shen et
al. [Shen et al. 2006], who found summaries to be more useful. We attribute this
distinction to the fact that the queries we used in this study are tail ones, which
are rare and difficult to classify.

5.4.4 Varying the number of classes per search result. We also varied the number
of classifications per search result, i.e., each result was permitted to have either 1,
3, or 5 classes. Figure 10 shows the corresponding precision-recall graphs for both
full-page and summary-only settings. As can be readily seen, all three variants
produce very similar results. However, the precision-recall curve for the 1-class
experiment has higher fluctuations. Using 3 classes per search result yields a more
stable curve, while with 5 classes per result the precision-recall curve is very smooth.
Thus, as we increase the number of classes per result, we observe higher stability in
query classification. This happens because as we increase the number of classes, the
influence of each individual vote towards a particular class is reduced and smoothed
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 10. Varying the number of classes per page (Set 1).

Number of results Precision F1

baseline 0.534 0.696

10 0.706 0.827

20 0.751 0.857

30 0.796 0.886

40 0.807 0.893

50 0.798 0.887

Table III. Varying the number of search results.

out over the aggregation.

5.4.5 Varying the number of search results obtained. We also experimented with
different numbers of search results per query. Figure 11 and Table III present the
results of this experiment. In line with our intuition, we observed that classification
accuracy steadily rises as we increase the number of search results used from 10 to
40, with a slight drop as we continue to use even more results (50). This is because
using too few search results provides too little external knowledge, while using too
many results introduces extra noise.

Using paired t-test, we assessed the statistical significance of the improvements
due to our methodology versus the baseline. We found the results to be highly
significant (p < 0.0005), thus confirming the value of external knowledge for query
classification.
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Fig. 11. Varying the number of results per query (Set 2).

5.5 Voting versus alternative methods

As explained in Section 4.2, one may use several methods to classify queries from
search engine results based on our relevance model. As we have seen, the voting
method works quite well. In this section, we compare the performance of voting
among the top-ten search results to the following two methods:

—GV: Generalized voting method described in Section 4.5. We discretize the qual-
ity score r(d, q) of a query/document pair (returned by a search engine) into
{high, medium, low}. We then learn the three corresponding weights on a set of
training queries using (8), and test the performance on holdout queries.

—DC: Discriminative classification learning of query-classification based on logistic
regression, described in Section 4.6.

GV requires a training/testing split. Neither voting nor DC requires such a split;
however, for consistency, we randomly draw 50-50 training/testing splits for ten
times, and report the mean performance ± standard deviation on the test-split for
all methods. For this experiment, instead of precision and recall, we use DCG-
k, popular in search engine evaluation. The DCG (discounted cumulative gain)
metric, described in [Jarvelin and Kekalainen 2000], is a ranking measure where
the system is asked to rank a set of candidates (in our case, judged categories for
each query), and computes for each query q:

DCGk(q) =
k∑

i=1

g(Ci(q))/ log2(i + 1),
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Set 1

Method DCG-1 DCG-5

Oracle 7.58± 0.12 14.56± 0.19

Voting 5.33± 0.16 11.82± 0.21

DC 5.51± 0.10 12.28± 0.19

GV 5.40± 0.13 12.16± 0.19

Set 2

Method DCG-1 DCG-5

Oracle 5.83± 0.10 10.21± 0.08

Voting 3.56± 0.14 7.94± 0.20

DC 3.74± 0.10 8.33± 0.12

GV 3.68± 0.06 8.21± 0.13

Table IV. Voting and alternative methods.

where Ci(q) is the i-th category for query q ranked by the system, and g(Ci) is the
grade of Ci: we assign grade of 10, 5, 1, 0 to the 4-point judgment scale described
earlier to compute DCG. The decaying choice of log2(i + 1) is conventional, which
does not have particular importance. The overall DCG of a system is the averaged
DCG over queries. We use this metric instead of precision/recall in this experiment
because it can directly handle multi-grade outputs. Therefore as a single metric,
it is convenient for comparing different methods. Note that precision/recall curves
used in the earlier sections yield some additional insights not immediately apparent
from the DCG numbers.

2 4 6 8 10

6
8

10
12

14

k

D
C

G
−

k

Oracle
Voting
DC
GV

Set 1

2 4 6 8 10

4
5

6
7

8
9

10

k

D
C

G
−

k

Oracle
Voting
DC
GV

Set 2

Fig. 12. DCG-k for k = 1, . . . , 10.
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Results from our experiments are given in Table IV, where DCG-1 and DCG-5
are reported with mean ± standard deviation. Figure 12 shows DCG-k for k =
1, . . . , 10, where we only report the mean values over the ten random splits. The
oracle method is the best ranking of categories for each query after seeing human
judgments. It cannot be achieved by any realistic algorithm, but is included here
as an absolute upper bound on DCG performance. The simple voting method
performs very well in our experiments. The more complicated methods may lead
to moderate performance gain (especially DC, which uses discriminative training
in Section 4.6). However, both methods are computationally more costly, and the
potential gain is minor enough to be neglected. This means that as a simple method,
voting is quite effective.

We can observe that GV, which uses a quality score returned by a search engine to
adjust importance weights of returned pages for a query, does not yield appreciable
improvement. This implies that putting equal weights (voting) performs similarly
as putting higher weights to higher quality documents and lower weights to lower
quality documents (GV), at least for the top search results. It may be possible to
improve this method by including other page-features that can differentiate top-
ranked search results. However, the effectiveness will require further investigation
which we did not test. We may also observe that the performance on Set 2 is lower
than that on Set 1, which means queries in Set 2 are harder than those in Set 1.

5.6 Failure analysis

We scrutinized the cases when external knowledge did not improve query classifi-
cation, and identified three main causes for such lack of improvement. (1) Queries
containing random strings, such as telephone numbers — these queries do not yield
coherent search results, and so the latter cannot help classification (around 5% of
queries were of this kind). (2) Queries that yield no search results at all; there were
8% such queries in Set 1 and 15% in Set 2. (3) Queries corresponding to recent
events, for which the search engine did not yet have ample coverage (around 5% of
queries). One notable example of such queries are entire names of news articles—if
the exact article has not yet been indexed by the search engine, search results are
likely to be of little use.

6. CONCLUSIONS

Query classification is an important information retrieval task. Accurate classifi-
cation of search queries can potentially be useful in a number of higher-level tasks
such as Web search and ad matching. Since search queries are usually short, by
themselves they usually carry insufficient information for adequate classification
accuracy. To address this problem, we proposed a methodology for using search
results as a source of external knowledge. To this end, we send the query to a
search engine, and assume that a plurality of the highest-ranking search results are
relevant to the query. Classifying these results then allows us to classify the original
query with substantially higher accuracy.

The results of our empirical evaluation definitively confirmed that using the
Web as a repository of world knowledge contributes valuable information about
the query, and aids in its correct classification. Notably, our method exhibits sig-
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nificantly higher accuracy than methods described in prior studies5. Compared to
earlier studies, our approach does not require any auxiliary taxonomy, and we pro-
duce a query classifier directly for the target taxonomy. Furthermore, the taxonomy
used in this study is approximately two orders of magnitude larger than that used
in prior works.

We also experimented with different values of parameters that characterize our
method. When using search results, one can either use only summaries of the
results provided by the search engine, or actually crawl the results pages for even
deeper knowledge. Overall, query classification performance was the best when
using the full crawled pages (Table I). These results are consistent with prior
studies [Gabrilovich and Markovitch 2007], which found that using full crawled
pages is superior for document classification than using only brief summaries. Our
findings, however, are different from those reported by Shen et al. [Shen et al.
2006], who found summaries to yield better results. We attribute our observations
to using a more elaborate voting scheme among the classifications of individual
search results, as well as to using a more difficult set of rare queries.

We also found that the best results were obtained by using full crawled pages
and performing voting among their individual classifications. For a classifier that
is external to the search engine, retrieving full pages may be prohibitively costly, in
which case one might prefer to use summaries to gain computational efficiency. On
the other hand, for the owners of a search engine, full page classification is much
more efficient, since it is easy to preprocess all indexed pages by classifying them
once onto the (fixed) taxonomy. Then, page classifications can be obtained as part
of the meta-data associated with each search result, and query classification can be
nearly instantaneous.

When using summaries it appears that better results are obtained by first con-
catenating individual summaries into a meta-document, and then using its classifi-
cation as a whole. We believe the reason for this observation is that summaries are
short and inherently noisier, and hence their aggregation helps to correctly identify
the main theme. Consistent with our intuition, using too few search results yields
useful but insufficient knowledge, and using too many search results leads to inclu-
sion of marginally relevant Web pages. The best results were obtained when using
40 top search hits.

In this work, we first classify search results, and then use their classifications
directly to classify the original query. Alternatively, one can use the classifications
of search results as features in order to learn a second-level classifier. In Section 5.5,
we reported some preliminary experiments in this direction, and found that learning
such a secondary classifier did not yield considerably advantages. We plan to further
investigate this direction in our future work.

It is also essential to note that implementing our methodology incurs little over-
head. If the search engine classifies crawled pages during indexing, then at query
time we only need to fetch these classifications and do the voting.

Our methodology for using search results can be particularly beneficial for rare
queries, for which little per-query learning can be done. In the present study we

5Since the field of query classification does not yet have established and agreed upon benchmarks,
direct comparison of results is admittedly tricky.
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proved that such scarceness of information could be addressed by leveraging the
knowledge found on the Web. In our recent work [Broder et al. 2009; Broder et al.
2008] we used the methodology developed in this paper to match Web search queries
with more relevant ads. To date, such matching has mostly been performed using
the bag of words, and we showed that using classification-based features allows us
to perform more fine-grained matching and serve more relevant ads.

In our further research we plan to make use of session information in order
to leverage knowledge about previous queries to better classify subsequent ones.
We are also studying the effect of query classification in new domains such as
folksonomies, where the context for query classification consists of tags assigned by
the users to cataloged objects.
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