
Generalized Link Suggestions via Web Site Clustering

Jangwon Seo†, Fernando Diaz‡, Evgeniy Gabrilovich‡, Vanja Josifovski‡, Bo Pang‡
†University of Massachusetts Amherst, 140 Governors Drive, Amherst, MA 01003
‡Yahoo! Research, 4301 Great America Parkway, Santa Clara, CA 95054

†jangwon@cs.umass.edu, ‡{diazf, gabr, vanjaj, bopang}@yahoo-inc.com

ABSTRACT
Proactive link suggestion leads to improved user experience
by allowing users to reach relevant information with fewer
clicks, fewer pages to read, or simply faster because the right
pages are prefetched just in time. In this paper we tackle
two new scenarios for link suggestion, which were not cov-
ered in prior work owing to scarcity of historical browsing
data. In the web search scenario, we propose a method
for generating quick links—additional entry points into Web
sites, which are shown for top search results for navigational
queries—for tail sites, for which little browsing statistics is
available. Beyond Web search, we also propose a method
for link suggestion in general web browsing, effectively an-
ticipating the next link to be followed by the user. Our
approach performs clustering of Web sites in order to aggre-
gate information across multiple sites, and enables relevant
link suggestion for virtually any site, including tail sites and
brand new sites for which little historical data is available.
Empirical evaluation confirms the validity of our method
using editorially labeled data as well as real-life search and
browsing data from a major US search engine.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage and Retrieval]: Information Search and Re-
trieval

General Terms: Algorithms, Experimentation, Measure-
ment

Keywords: Quick links, Tail sites, Link suggestion, Web-
site clustering, Assisted browsing

1. INTRODUCTION
Finding information on the web often amounts to finding

the right URL. Proactively suggesting links that are rele-
vant to users’ current information needs is therefore likely
to lead to higher user satisfaction and allow the users to ac-
complish their goals faster. In this paper we propose two
novel link suggestion approaches for the two main ways to
find information online, namely, web search and browsing.

In response to a navigational query [3], search engines
strive to provide the URL to which the user likely wants
to navigate. However, many navigational queries still have
some amount of ambiguity. For example, when submitting
the query “P.F. Chang’s” (a chain of Chinese restaurants in
the U.S.), the user may be interested in finding the closest

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2011, March 28–April 1, 2011, Hyderabad, India.
ACM 978-1-4503-0632-4/11/03.

p.f. chang search

P.F. Chang's China Bistro (Nasdaq: PFCB)
P.F. Chang's China Bistro. ... News/Events | Investor Relations | Privacy Policy | Terms of Use
| About Us | Site Map
http://www.pfchangs.com

Locations Warrior Card Info

Chef’s Corner Careers

Order Online News & Events

Contact Us Our Bar

Figure 1: Example of link suggestions in a search
result page for the navigational query ‘P.F. Chang’.

restaurant, checking the menu, booking a table, or ordering
a take-away. The search engine cannot possibly determine
the right alternative given the very short query. What it
can do, however, is to surface direct links to the most likely
of these options, by showing them beneath the main URL,
www.pfchangs.com (cf. Figure 1). These suggested links are
known as quick links, and today all major search engines
offer this functionality.

Link suggestion was also found to be useful in many sce-
narios beyond web search, including web page pre-fetching
[14] and site navigation [20]. As a result, link suggestion
systems have received considerable attention in a variety of
commercial systems, from major search engines to compa-
nies distributing pre-fetching technology1.

Previous work on link suggestion mainly focused on ex-
ploiting logged user browsing behavior to achieve strong per-
formance. Quick link suggestion uses clicks logged in tool-
bar data to determine relevance [5]. Similarly, pre-fetching
systems often use site-level access logs to suggest links for
pre-fetching [14]. Although these techniques are adequate
for sites with sufficient traffic, performance can suffer when
such data is scarce or does not exist at all. For example,
quick links are available for popular restaurant chains such
as “P.F. Chang’s”, but not available for “Tarzana Armenian
Deli”. Unfortunately, sufficient traffic is often a luxury pos-
sessed by a relatively small number of sites; low traffic is the
norm.

To address this limitation, we broaden the scope of link
suggestion techniques beyond traffic-based solutions. In the
context of quick links, we extend traffic-based models to
include non-traffic signals based on page and site layout. We
also cluster sites to leverage similarities between categories

1http://en.wikipedia.org/wiki/Web_accelerator

of sites. For example, restaurant web sites should include
a ‘menu’ quick link. Together, our techniques allow us to
perform quick link suggestion for a much larger set of sites;
in principle, we can provide a quick link to virtually any
page.

We also introduce a task similar to pre-fetching, which
we call dynamic quick links. While the use of static quick
links is limited to Web search, in dynamic quicklinks, we
condition the recommendation of quick links on the page
the user is currently reading. One way to present dynamic
quick links is by providing a tool (e.g., a pop-up window)
suggesting links to browse next. Traffic-based models similar
to those used in pre-fetching can be used for dynamic quick
link suggestion. We also exploit both site-level and link-level
clustering to improve performance.

The contributions of this paper are threefold. First, we
extend the existing quick links paradigm and propose an
approach to compute quick links for any web site, including
tail sites as well as brand new sites. Second, we formulate
the notion of dynamic quick links, and propose an approach
for assisted browsing, effectively anticipating which link the
user will choose next from any given page. In both of this
scenarios, we propose methods that are applicable to any
site, including those for which little or no historical brows-
ing data is available. This becomes possible due to our use
of non-traffic-based data based on page and site structure,
as well as clustering of Web sites to address data sparsity.
Finally, our experimental evaluation confirms the validity of
our method using editorially labeled data as well as real-life
search and browsing data from a major US search engine.

2. PROBLEM DEFINITION
The static quick links task refers to the problem of

selecting and ranking links for a user entering a web site. It
is defined by a set of sites, S. Each site, s ∈ S, has a set of
candidate quick links, U(s). In our work, U(s) consists of all
the links contained on the web site’s homepage p. For each
u ∈ U(s), there is an unobserved binary relevance rs(u) ∈
{0, 1}. Given s ∈ S, we would like to select and rank a
set of k urls from U(s) so as to maximize the relevance of
this set. We remain agnostic about performance measures
of relevance, studying several in our experiments.

The dynamic quick links task refers to conditioning
our selection and ranking of k urls on the url u′ ∈ U(s) that
the user is currently browsing.

A key question in developing link suggestion algorithms
is whether to make them query dependent or not. Choosing
the query dependent route is beneficial for Web search, as it
uses additional information contained in the query. Yet this
also comes at a cost, as this approach increases the amount
of computation to be done for each query, a critical consid-
eration for search engines handling hundreds of millions of
queries each day. Query independent approaches are also
more general, as they can equally apply to browsing sce-
narios, where no explicit query is available. For the sake
of uniformity and computational efficiency, in this paper we
opted to focus on query independent approaches.

3. ALGORITHMS

3.1 Static Quick Links
We adopt a machine learning approach to address the

static quick links task. In general, machine learning ap-
proaches learn a relationship between task instances and a
desired target value. In our situation, each u ∈ U(s) is an
instance and the desired target value is its relevance, rs(u).
In order to generalize between instances, machine learning
approaches compute abstract features of each instance and
learn the relationship between these features. Learning is
performed by using a small set of training instances which
have labeled target values; in our case, we assume access to
a small set of sites St ⊂ S whose URLs have the relevance
values, rs(u), provided. Such an approach requires that we
define two things: how to compute instance features and
how to model the relationship to the target.

3.1.1 Features
We followed two principles when designing features. First,

obviously we would like features of u which correlate with
rs(u). Second, because we are interested in strong perfor-
mance on both head and tail sites, we would like features
well-represented in both head and tail sites. For exam-
ple, restricting ourselves to click-based features results in
poor representations for tail sites. We refer to features well-
represented in both head and tail sites as common features,
and features better represented in head sites (tending to be
sparse in tail sites) as head features. It is worth noting that
head features carry critical information about how popular
links are or how often links are used [5].

For each u ∈ U(s), we generate three sets of common
features. URL-based features are extracted from a URL ad-
dress of u, for example, the depth of the URL path, the
type of URL file extensions (e.g., html, jpg, php), etc. An-
chor text-based features are extracted from anchor text used
for u in the homepage p of that site, for example, how many
named entities are in anchor text w, how many nouns or
verbs are in anchor text, etc. Notice that these are func-
tions of the text not term features often used in the informa-
tion retrieval and text classification literature; we do this to
provide generalization across different types of sites. DOM
block-based features are extracted from the Document Ob-
ject Model (DOM) block b (of homepage p) that u belongs
to; for example, the ratio of bytes of text to the number of
links in b, the position of b in DOM block order, etc.

For each candidate quick link, we generate two sets of head
features. Link structure-based features are extracted from
hyper-link structures of the whole Web graph, for example,
the number of incoming links to u. User behavior-based fea-
tures are extracted from user behavior data such as toolbar
logs, for example, the number of visits to u over a certain
period of time. We expect head features to be extremely
sparse or nonexistent for tail sites.

In subsequent sections, we will refer to the features of u
as φs

u.

3.1.2 Modeling Relevance
We would like to model the relationship between a can-

didate quick link’s features, φs
u and its relevance, rs(u). To

accomplish this, we cast our task as a regression problem.
That is, we would like to learn a function h whose domain
is the site and candidate quick link and whose range is rel-

evance. We measure the training set error of h as,

E(h,St) =
∑
s∈St

∑
u∈U(s)

(h(s, u)− rs(u))2 (1)

The general regression problem is to select a function h̃ such
that,

h̃ = argminh∈HE(h,St) (2)

The hypothesis space, H, is the set of possible functions
which fit a particular functional form. In order to perform
learning, we need to define H and describe how we search
it.

In our work, each h ∈ H is defined as a decision tree forest
[16] composed of m trees such that,

h(s, u) = λ0f
0(φs

u) + · · ·+ λmf
m(φs

u) (3)

where f i is a regression tree, φs
u represents the features gen-

erated for candidate u of site s, and λi is a parameter con-
trolling the contribution of fi to the prediction. Regres-
sion trees are appropriate for our task because they can ad-
dress both numerical and categorical features and have been
shown to be highly effective for ranking tasks [28].

Because finding the exact solution to Equation 2 for our
hypothesis space is NP-Complete, we apply Friedman’s Gra-
dient Boosted Decision Tree (GBDT) algorithm to search
the space [16]. The GBDT algorithm searches H using a
boosting approach. GBDT begins with an initial function
f0 that is usually an average value of labels of all training
samples. The subsequent trees, f i, iteratively minimize the
L2 loss with respect to the residuals of the predicted values
and the target values. Each weight, wi is a monotonically
decreasing function of i, parametrized by a value, η, referred
to as the learning rate. In addition to η, the model has two
other parameters: the number of trees and the number of
nodes per tree.

We induce a ranking of quick links U(s) by computing

h̃(s, u) for each u ∈ U(s) and ranking by the prediction.

3.1.3 Class-Specific Modeling
In the previous section, we performed ranking of quick

links for each site separately, and no information was shared
between similar sites. We now turn to exploring the simi-
larities between different sites.

Consider two sites s and s′, both of which are restaurants.
We know that, for sites of the class ‘restaurant’, quick link
candidates with anchor or URL text containing the term
‘menu’ should receive the same relevance. That is, given
two quick link candidates from sites in the same class, similar
candidates will have similar relevance.

In order to exploit site classes, we need to classify sites in
the first place. We accomplish this by clustering sites using
a term-based representation. Let ws be the |V| × 1 term
vector for site s; terms are extracted from anchor text and
URL paths of links in pages. Sites are then clustered us-
ing the diffusion wavelet approach introduced in [26]. This
method works by constructing a term-term co-occurrence
matrix from the bag-of-word representations of sites, i.e., by
TTT where T is the |S|×|V| ‘collection’ matrix. Then, using
the diffusion wavelet algorithm [9], we obtain wavelet ‘topic
bases’. Each topic basis, φi, is a |V| × 1 vector capturing
the behavior of terms in a particular class. We assign a site
s to the class determined by argmaxi〈φi, ws〉. The advan-
tage of this approach is that it does not require that a fixed

number of clusters be specified in advance. However, other
clustering approaches can be applied as well. This provides a
partitioning of sites, allowing us to learn class-specific mod-
els.

For each class c ∈ C, we are interested in training a class-
specific model, hc, which leverages similarities between sites.
In order to train a class-specific model, we adopt the Tree-
based Domain Adaptation (Trada) algorithm [7]. Trada
begins by training a generic model as in Section 3.1.2. The
algorithm then modifies the generic model to minimize the
loss function with respect to target values in a target do-
main; in our case, this target domain is a class of sites. That
is, we are going to minimize our loss function, constraining
ourselves to those instances in class c,

h̃c = argminhc∈Hc
E(hc,St

c) (4)

where St
c is a set of relevance-labeled sites of class c.

Equation 4 is equivalent to Equation 2 except for the set
of training instances and the hypothesis space. Defining Hc

becomes the critical part of this technique. As mentioned
earlier, our algorithm needs to use features of quick link can-
didates that allow similar candidates to receive similar pre-
dictions. Unfortunately, neither the common features nor
the head features capture the semantic similarity of pairs of
candidates. We manage this by using term features. The
idea here is that while common and head features provide
evidence for quick link relevance in general (e.g., ‘highly vis-
ited candidates are relevant’), term features provide class-
specific evidence (e.g., ‘for restaurants, candidates whose url
contains ‘menu’ are relevant’). As a result, we defineHc such
that

hc(s, u) = h̃(s, u) + λ0f
0
c (wu) + · · ·+ λm′f

m′
c (wu) (5)

where h̃ is the generic model approximated in Section 3.1.2,
which is fixed for all hc ∈ Hc, and wu represents the bag of
words associated with candidate u. Except for the addition
of h̃(s, u), Equation 5 is identical to Equation 3 and, as
a result, Trada searches Hc using the boosting approach
described in Section 3.1.2.

Because Equation 5 uses fairly sparse term features, we
need a substantial amount of training data for each class. If
the number of classes is large, then collecting many manual
labels for sites in every cluster can be expensive. In or-
der to gather sufficient training data, we bootstrap by auto-
matically labeling unlabeled sites and quick link candidates.
That is, for each cluster, we first use the generic model to
predict relevance scores of links in unlabeled sites. Next, we
assign pseudo-labels to the links, e.g., links in the top 30%
are relevant while links in the bottom 30% are non-relevant.
Finally, we apply the Trada algorithm with these pseudo-
labels. The main advantage of this approach is that we can
cheaply leverage an enormous number of homepages on the
Web. This approach demonstrated strong performance in
the context of vertical selection [1].

3.2 Dynamic Quick Links
The dynamic quick links task allows us to adjust the rank-

ing of links depending on the context of the user. In this
case, context is defined by the current page u ∈ U(s). Con-
sider a user reading the ‘menu’ page of a restaurant. If we
have observed many other visitors navigating to the ‘direc-
tions’ page immediately after reading this page, then there

is evidence supporting the relevance of the ‘directions’ page
in this context.

In order to address the sparsity of browsing data for tail
sites, we leverage information from semantically related quick
link candidates. To accomplish this, we cluster quick link
candidates within our site classes C. Our quick link cluster-
ing algorithm will use term-based representations, resulting
in clustering links with related text (e.g., ‘directions’ and
‘location’). Specifically, we use anchor text and words in
URL paths.

Although we could perform an unsupervised clustering
method as in Section 3.1.3, here we have unique data that
we can exploit to direct the clustering. We hypothesize that,
given two sites in the same site class, two links are seman-
tically similar if they share a similar number of visits. So,
given two arbitrary restaurants, the two ‘menu’ quick links
should receive comparable numbers of visits. In practice we
normalize the number of visits by the number of site visits
in general so that we can compare links from head and torso
sites.

Our representation is term-based, our supervision is a
real valued number (as explained above), and our cluster-
ing method is supervised Latent Dirichlet allocation (LDA)
[2]. Supervised LDA projects each training instance into
a k-dimensional ‘topic space’, represented as a multinomial
distribution over topics; that is, for each u, we have a dis-
tribution p(c|u) over all c ∈ C.

Once we have abstract representations of links, we inves-
tigate browsing behaviors between links or the representa-
tions. We make a Markov assumption about link transition:
the class of the next link to be browsed depends only on the
class of the current link. Assume B is our browsing data
encoded as url transitions. We compute the empirical dis-
tribution of transition probabilities from quick link class ci
to cj as,

Pij =

∑
u→u′∈B p(ci|u)p(cj |u′)∑

ck

∑
u→u′∈B p(ci|u)p(ck|u′)

While the estimated random walk matrix represents only
one step of browsing, it may be beneficial to encode multi-
ple steps of browsing. This is because some users may prefer
shortcuts from one link to another link that is several hops
away instead of going through several intermediate links that
most users follow. To model this, we construct a new ran-
dom walk matrix as follows:

R =
1

Z

T∑
a=1

γa−1Pa

where Z is a normalization factor, γ is a shrinkage parame-
ter, and T is the maximum number of steps to consider.

Given this quick link transition matrix, we are now going
to rank the quick link candidates. Assume zu = [p(c0|u),
p(c1|u), · · · , p(ck−1|u)] is the k×1 topic vector of the current
url the user is reading. We first compute scores for the
possible classes of the next quick link as,

z̃u = RTzu

To find links relevant to u, we compute cosine similarity
between z̃u and topic vectors of each v ∈ U(s). Because
this similarity captures only textual properties of quick link
candidates, we combine the cosine similarity with the GBDT
prediction, which is based on additional types of features (cf.

Sections 3.1.1 and 3.1.2):

f(s, u, v) = τh(s, v) + (1− τ)〈z̃u, zv〉

where τ is a parameter. Candidate links are then ranked by
f(s, u, v).

4. EXPERIMENTAL SETUP

4.1 Data
We constructed two sets of homepages: a collection of

pages from popular Web sites with rich user traffic informa-
tion from search logs or toolbar data (head set), as well as
a collection of less visited pages (tail set). Note that in our
experiments, candidates for link suggestion in a given site is
restricted to links available in its homepage, thus we often
use the words homepage and site interchangeably. For the
head set, we randomly sampled 5,153 sites among popular
web sites for which (a) Yahoo! Search was providing quick
links on search result pages, and (b) there was sufficient user
traffic information from toolbar logs and click logs. For the
tail set, our goal was to construct a collection of homepages
that were not as heavily visited. We were not aware of an
existing index of all homepages online from which to sam-
ple. Thus, we constructed our dataset by extracting the
most relevant search results for navigational queries. We
first sampled 100,000 million queries from query logs of Ya-
hoo! Web Search and applied an internal navigational query
classifier trained on manually labeled examples. For more
details on the classifier, see [10]. For each query classified as
a navigational query, we identified its most clicked url. We
refer to such urls as homepages. We then restricted to those
homepages that were not heavily visited (less than 1,000
clicks recorded in a month-worth of click logs), but have
more than 10 outgoing-links (otherwise link suggestions are
not very usuful). We collected a total of 14,332 homepages
from tail sites.

Simple statistics over the head and tail sets are shown
in Table 1. Note that typically there are a large number
of candidate links from the homepage of a given site: on
average a head site has 173 links on its homepage.

Table 1: Statistics of head and tail sets
#sites Avg. #links

Labeled Unlabeled Total per site
Head set 786 4367 5153 173.72
Tail set 507 13825 14332 50.76

Dynamic quicklinks experiments used the same dataset
and split as static quicklinks. We considered the bigger set
as the training data — note that the original labels were
not relevant here. We took one month of Yahoo! toolbar
logs and extracted all browsing sessions which included the
relevant homepages. We segmented the sessions according
to rules similar to those used in [5]. For example, a session is
terminated if any two consecutive clicks are longer than 10
minute apart or a Back button is clicked. URLs that were
not in the candidate set were removed from the sessions.

4.2 Evaluation
In principle, performance of link suggestions on head sites

can be evaluated using actual user traffic information. But
since we do not have sufficient user traffic information for

tail sites, we randomly selected a sample of sites from both
collections for manual annotations, where editors were asked
to select up to 10 useful destinations for each site among all
links in its homepage. The selected links were considered to
be relevant, the rest were considered to be non-relevant.

In terms of metrics, we considered four standard evalu-
ation metrics in information retrieval: precision, recall, F1

score (the harmonic mean of precision and recall), and mean
average precision (MAP). Following previous work [5], we
assumed 8 links will be provided as quick links for a home-
page on the search result page. Accordingly, we used 8 as
the cut-off point for all metrics and report precision, recall,
F1 and MAP at 8 (P@8, R@8, F1@8 and MAP@8, respec-
tively). We performed the permutation test and considered
an improvement statistically significant if p-value < 0.05.

In order to evaluate our class-based model, we focused
our experiments on clusters that were large enough to have
effective smoothing among pages in that cluster. Out of the
49 clusters in our dataset, the top 10 clusters cover more
than 60%, each with over 314 sites. Note that in a real
system, the number of considered sites could be much larger
and the number of reasonably-sized clusters might increase
as well.

Since it would be more difficult to obtain manual labels
for the dynamic link suggestion task, evaluation used traffic
information that was available for sites in the head set. We
predict the next link to be visited given the current link in
each user session in the test data. Given the motivation for
this task, we evaluated the quality of the top 4 predicted
link in each case. Let Q4

u ⊂ U(s)−u be the set of predicted
links. If B∗ is our observed browsing data, then define our
browsing metric as,

B4 =

∑
u→v∈B∗ I(v ∈ Q4

u)

|B∗|

where I is the indicator function.

4.3 Runs
We consider three baseline systems for the static quick-

links task. Two baselines represent simple ways of estimat-
ing the “popularity” of a candidate link. One estimate is
derived from the Web graph and ranks candidate quicklinks
according to the number of incoming links from the entire
web. We refer to this baseline as # inlinks. Another es-
timate of popularity can explicitly use visitation data. In
this case, candidate quicklinks are ranked according to the
number of visits registered in one month of Yahoo! Tool-
bar logs. We refer to this baseline as # visits. A much
stronger comparison point is the state-of-the-art technique
recently introduced by Chakrabarti et al. [5] (see Section
7 for more details). This greedy algorithm was shown to
outperform other methods such as ranking by the number
of visits recorded toolbar logs. We denote this system as
Greedy.

We tested three versions of our static quicklinks models.
The basic Gbdt model was trained with two sets of features.
Runs labeled Gbdt-C use only common features, while runs
labeled Gbdt-HC use both common and head features.

As a baseline for adaptive modeling, we consider an adap-
tive model which uses additional pseudolabeled data and
features without clustering sites. That is, we performed
the adaptation algorithm described in Section 3.1.3, but
treated the entire dataset as one cluster. This baseline is

labeled Adapt-all. Runs labeled Adapt-cls build class-
specific models with the additional pseudolabeled data and
features.

4.4 Training
For Gbdt models, the shrinkage factor was set to 0.05, and

other parameters were chosen by 10-fold cross validation.
Our class-based model required additional parameters. Re-

call from Section 3.1.3, once we clustered homepages into
different classes, the original Gbdt-C model is applied to
each cluster in the tail unlabeled set to obtain pseudo-labels.
10% of the homepages in the unlabeled tail set were set aside
as the held-out set to estimate the two parameters for new
regression trees, i.e., the number of trees and the number
of nodes. They were chosen to minimize the loss function
with respect to the pseudo-labels on the held-out set. Tree
adaptation using the TRADA algorithm was performed on
the rest 90% of homepages in the tail unlabeled set.

For dynamic quicklinks, our random walk parameters, i.e.
γ and τ were tuned on the training data except for T which
we set to 3. Topic models for clusters are learned using
the collapsed Gibbs sampler [18]. We fix free parameters as
follows: the number of topics K = 20, the Dirichlet hyper-
parameter α = 0.01 and the variance of the response vari-
ables σ2 = 0.09.

5. RESULTS

5.1 Static link suggestions
We evaluated the performance of our algorithms sepa-

rately on head and tail sites. On head sites, we compare
the proposed technique with the three baseline systems (#
inlinks, # visits, Greedy). Since some of these systems
relied heavily on head features, we expect them to be strong
baselines. Because these baselines rely on features that are
scarce in tail sites, we compare performance to Gbdt-HC
which, as we will see, can be considered a strong baseline.

Table 2(a) summarizes performance on head sites. The
two simple baselines, # inlinks and # visits, perform bet-
ter than random but significantly underperform Greedy.
However, Gbdt-HC, which uses both head and common fea-
tures, yielded the best performance across all four metrics.
Interestingly, the Gbdt model using only common features
(Gbdt-C) performed comparably to Greedy.

Table 2(b) summarizes performance on tail sites. The
Gbdt models used to obtain these results were trained on
the labeled head set. Consequently, these results show that
our model can generalize from head sites to tail sites. We
also performed 10 fold cross-validation on the tail labeled
set and observed almost identical trends.

5.2 Effect of class-based adaptation
We ran separate experiments to evaluate the performance

of our class-based adaptation algorithm. These results are
presented in Table 3. Adapt-cls outperforms Gbdt-C for
eight out of ten clusters. In order to confirm that our im-
provements were not the result of merely adding term-based
features, we compared performance to Adapt-all, a model
which incorporates the additional term-based features with-
out site clustering. As we can see from Table 3, Adapt-all
did not yield any improvement over Gbdt-C. In fact, ag-
gregated over these ten clusters, Adapt-cls outperforms
both Gbdt-C and Adapt-all across all four metrics, sta-

Table 2: Comparison of quick link selection techniques on (a) 786 head sites and (b) 507 tail sites. A †
indicates a statistically significant differences from both of two weak baselines, # inlinks and # visits while
a ‡ indicates a statistically significant differnece from a strong basline, Greedy.

(a) head sites

Method P@8 R@8 F1@8 MAP@8
inlinks 0.2221 0.2799 0.2420 0.1362
visits 0.2875 0.3560 0.3113 0.1837
Greedy 0.3580† 0.4233† 0.3806† 0.2646†

Gbdt-C 0.3477† 0.4275† 0.3763† 0.2890†‡

Gbdt-HC 0.4361†‡ 0.5330†‡ 0.4702†‡ 0.3915†‡

(b) tail sites

Method P@8 R@8 F1@8 MAP@8
Gbdt-HC 0.4308 0.4950 0.4277 0.2930
Gbdt-C 0.4369 0.4928 0.4328 0.2904

Table 3: MAP@8 of quick link selection for each
class (cluster) of sites. A † indicates a statisti-
cally significant improvement over both Gbdt-C and
Adapt-all in aggregation. Performance on other
metrics follows the same trends.

Cluster Gbdt-C Adapt-all Adapt-cls
1 0.2949 0.2829 0.3066
2 0.2259 0.2233 0.2292
3 0.2549 0.2641 0.2640
4 0.3687 0.4000 0.3729
5 0.2271 0.2166 0.2383
6 0.2307 0.2374 0.2296
7 0.4877 0.4344 0.4877
8 0.2552 0.2490 0.2632
9 0.2575 0.2557 0.2610
10 0.3521 0.3860 0.3789

total 0.2775 0.2744 0.2854†

tistically significant in three cases. This provides empirical
evidence for our hypothesis “similar types of sites have links
corresponding to similar functions as good links”.

5.3 Dynamic link suggestions
In our dynamic quicklinks task, we adopted the best static

quicklink model, Gbdt-HC. For each site class c, we trained
Gbdt-HC with all labeled examples except for those in c
and tested on c. We removed the current URL from the
candidate set for each test trail.

Experimental results are shown in Table 4. In seven clus-
ters, the dynamic link suggestions outperformed the static
link suggestions by large margins. In the other three clus-
ters, the static link suggestions and the dynamic link sugges-
tions showed little difference. In aggregation, the dynamic
link suggestions yielded much better performance than the
static link suggestions, and the improvements are statis-
tically significant. This demonstrates that modeling user
browsing patterns over types of links achieves more accu-
rate link suggestions.

For reference, we also conducted experiments examining
the upper-bound of performance over head sites. That is, for
sites where we have sufficient user browsing data over indi-
vidual links, can we reasonably predict where a user is going
to go next based on what other users have done in this same
site? Maybe there is a huge variance among users in this
dynamic scenario, that there is not much room for improve-
ment? To this end, we computed a transition matrix over
individual links for each site, counting transitions among

Table 4: Results of link suggestions considering user
browsing patterns according to types (clusters) of
sites. “static” and “dynamic” represent the best per-
forming model in the previous section, i.e., Gbdt-HC
and the random walk-based approach, respectively.
The numbers are B4 values. A † indicates statisti-
cally significant improvement on “static” in aggrega-
tion.

cluster (#transitions) static dynamic
1 (1094) 0.3821 0.3803
2 (4694) 0.5187 0.6027
3 (6827) 0.2659 0.3098
4 (4840) 0.3407 0.3884
5 (3269) 0.3772 0.4035
6 (32522) 0.3421 0.3428
7 (840) 0.4214 0.4024
8 (3449) 0.2157 0.2873
9 (7267) 0.3041 0.3750
10 (2739) 0.2205 0.4045

total (67541) 0.3344 0.3682†

physical links in user trails. The next links were predicted
as the most likely outgoing links from the current position.
Note that in this case a transition matrix built for a given
site is completely not applicable to another site. We per-
formed 10-fold cross-validation for each site in the test set,
using browsing patterns learned over one subset of users to
predict for unseen visitors to the same site. On average, we
obtained an upper-bound of 0.654 in B4 value. Indeed, on
each particular site, there is a reasonable amount of regular-
ity in terms of browsing behavior. This suggests that we still
have plenty of room for improvement. Although we should
also note that some of this regularity might be site-specific
and does not generalize to other sites.

In contrast, our models were built over fairly general rep-
resentations, specific only to a given site cluster. The mod-
els, once learned, can be applied to any unseen sites classified
into an existing site cluster, just as we applied our model to
the test sites that were unseen in the training phase.

6. DISCUSSION

6.1 Static link suggestion
Our results for static quick links are compelling because

they imply that traffic information, while sufficient, is not
necessary for strong performance. This result also means
that existing traffic-based approaches can be improved with

Table 5: Top 10 features in Gbdt models. p: a page; u: a candidate link; b: the DOM block to which u
belongs. len(s) is the length of text in s, measured in bytes.

(a) Gbdt-HC

Feature Weight
of visits to u 100.00
of u in p 69.14
of in-coming links to u 57.48
len(u) 47.13
the depth of the path of u 43.11
Are u and p in the same domain? 41.24
len(b) / len(p) 39.44
of links in b / # of links in p 35.29
of links in b / len(b) 33.56
of images in b / # of links in b 31.17

(b) Gbdt-C

Feature Weight
of u in p 100.00
len(u) 95.98
len(b) / len(p) 60.53
of links in b / # of links in p 59.92
of links in b / len(b) 52.42
of images in b / # of links in b 50.75
Are u and p in the same domain? 49.83
the depth of the path of u 46.15
the position of b in p 41.25
len(anchor text of u) 31.25

content-based features. Furthermore, this result suggests
that traffic-based approaches can be replaced entirely by an
approach that uses only common features. Consequently,
web sites or search engines can present quick links even with-
out having to maintain a Web graph or toolbar data.

It is worth noting that performance numbers on the head
set (Table 2(a)) are lower than on the tail (Table 2(b)). How-
ever, Table 1 demonstrates that there were fewer candidate
links in tail sites compared to head sites, which effectively
makes the problem slightly easier.

We were also interested in the importance of the different
features in Gbdt models. Tables 5(a) and 5(b) show the
top 10 most important features of Gbdt-HC and Gbdt-
C, respectively. The feature importance is computed based
on how much each feature contributes to the loss reduction
[16]. The top features of Gbdt-HC and Gbdt-C largely
overlap, except for two head features (# of visits and # of
incoming links to u) available only in Gbdt-HC. Among the
important common features, those based on page layout or
link position dominate. This indicates that homepages in-
deed tend to be designed with useful links made more salient
to users, and that our features can effectively capture such
layout-based cues.

In order to explain the effectiveness of common features,
we compared the distributions of relevant and non-relevant
links for head and tail sites. We expect common features to
behave similarly for both head and tail sites while head fea-
tures should behave very differently. If the distributions are
completely different, then it is unlikely we can apply a model
learned on the head sites to the tail sites. Figure 2(a) shows
the distributions of the top 6 common features. Note that
the distributions in tail sites often follow similar contours
as those in the head sites. In contrast, Figure 2(b) shows
the distributions of the two most important head features
in Gbdt-HC (recall that all other important features for
Gbdt-HC were common features). Here the distributions
in the tail sites are quite different from those in the head
sites, lacking the differentiation between relevant and non-
relevant sets. In fact, most head features in the tail set take
a zero value due to the absence of user traffic information
from which head features were extracted.

6.2 Dynamic link suggestion
Our results for dynamic link suggestion, although only

evaluated on head sites, demonstrate the efficacy of cluster-

ing links within a site class. Because the lower dimensional
representation of a link, zu, is not dependent on traffic in-
formation, we should be able to extend models to tail sites
within a cluster.

Nevertheless, performing the tail evaluation for this task
requires more work. Editorial data is problematic because
of the subjectivity in assessing a contextual suggestion (i.e.,
editors would have to assume the role of a user reading a
certain page). However, there may be some combination of
editorial and log data that provides good evaluation.

Despite having focused on quick link suggestion for our
experiments, it is worth inspecting the link clusters. Table
6 shows an example of an estimated topic model for a site
cluster related to “educational institutions”. Each link clus-
ter looks reasonable. For example, links about scholarship
or financial aids make one topic (#14), while links about
faculty or staff directories make another topic (#10).

In addition to inspecting link clusters, we can inspect
dominant transitions between clusters within a class of sites.
Figure 3 shows an example of dominant transitions in a
random walk matrix estimated from sites related to “sports
teams”. We can observe some interesting patterns, for ex-
ample, users visiting links about ballparks subsequently visit
links about ticket sale with some probability. Also, links
about multimedia clips follow links about fan forums. These
transitions look reasonable enough to be easily understood.

7. RELATED WORK
Our work explores two ways of generalizing quick link se-

lection, and proposes link suggestion methods that are ap-
plicable to any web site. Several prior studies demonstrated
the usefulness of link suggestion. Juvina and Herder [20]
used a user study to show that link suggestions help users
navigate the web in a structured manner. White et al. [27]
showed that different types of suggestions (e.g., query sug-
gestion vs. link suggestion) are better suited for different
types of tasks.

Link suggestion has been applied to web site design and
organization. Perkowitz and Etzioni [23] addressed auto-
matically generating index pages that contain useful links,
reflecting evolving site usage patterns. Srikant and Yang [25]
studied the scenario when the real location of a page can be
different from where users expect it to be, and presented an
algorithm selecting the expected locations. Doerr et al. [12]

Table 6: Topics estimated from a cluster of sites
related to “educational institutions” by the super-
vised LDA model. Terms are stemmed by the Porter
stemmer.

Topic Topic terms
1 email mail login webmail e
2 employ job hr career human
3 school counti org museum scienc
4 download project org test softwar
5 research administr bookstor univers presid
6 student servic center career health
7 gov counti us educ court
8 class schedul cours blackboard regist
9 event new calendar emerg newsroom
10 faculti staff contact directori us
11 academ program degre school graduat
12 admiss appli student prospect undergradu
13 map campu direct visitor tour
14 student aid financi current scholarship
15 us contact about polici privaci
16 life z campu student hous
17 calendar academ event orient registrar
18 librari athlet univers scienc school
19 rss new how feed get
20 alumni give parent friend famili

and Kranakis et al. [21] proposed algorithms for suggesting
shortcuts between pages in a web site by analyzing web logs.

Chakrabarti et al. [5] were the first to discuss quick link
generation as link suggestion. The authors approached the
quick link selection problem as a combinatorial optimiza-
tion problem, since the space on search engine result pages
is limited, and only high value link suggestions should be
surfaced there. This study proposes an algorithm that is
within a factor of (1− 1/e) from the optimum.

Link suggestion has been also applied to URL pre-fetching.
Duchamp demonstrates that a popularity-based pre-fetching
protocol can significantly reduce latency and bandwidth us-
age [14]. Subsequent work explored more efficient implemen-
tations [8], personalization [11], and longer-term modeling
[13, 15]. This line of work requires availability of web site
access logs, which can be scarce for tail sites or nonexistent
for newly created sites.

The main limitation of the previous studies is that their
techniques cannot be used for tail sites where there is not
enough historical traffic information, such as site access logs
or toolbar logs. In this work, we tackle this problem by
introducing a feature-based model that can be effective even
without such statistics.

Features we define are inspired by web page segmentation
and template extraction studies [6, 22, 19, 24, 17, 4]. Struc-
tural features have also been proposed in a number of other
studies. Lin and Ho [22] and Gupta et al. [19] proposed al-
gorithms to extract content blocks from HTML pages using
a DOM (Document Object Model)-based approach and an
information theoretic approach, respectively. In the context
of template extraction, Gibson et al. [17] studied the na-
ture and prevalence of templates on the Web, introducing a
randomized template extraction algorithm. Chakrabarti et
al. [4] formulated smoothing of a classifier for scoring DOM
blocks and showed that their approach is effective for tasks

ballpark
stadium
park

ticket
seat
price

team
cup

pitcher

yahoo
fantasi
baseball

roster
team
activ

stat
player
transact

fan
forum
classic

media
video
more

commun
foundat

download
team
coach
staff

Figure 3: Example of transition between topics cor-
responding to clicked links. These topics are esti-
mated from sites related to “sports teams”. Terms
are stemmed by the Porter stemmer.

such as web page classification or duplicate detection. Al-
though we use similar features to those introduced in the
above studies, our work is different in that their techniques
focus on DOM blocks while we emphasize the links in those
blocks.

We learn a feature-based model using the Gradient Boosted
Decision Tree (GBDT) algorithm proposed by Friedman [16].
More recently, this method was adapted for ranking by Zheng
et al. [28].

8. CONCLUSIONS
We have demonstrated that traffic-based link suggestion

solutions, while effective, can be significantly improved using
non-traffic-based data as well as clustering. These results
imply not only that existing link suggestion systems can
be improved, but also that their coverage can be extended
to tail sites whose lower popularity often results in poorer
performance on them.

There are several possible areas of future research. As
mentioned earlier, if we are going to evaluate dynamic quick
link algorithms for tail sites, we need to develop techniques
for moving beyond traffic-based evaluation. We also think
that there could be several improvements to our modeling,
in terms of features, algorithms, and clustering.

We believe our approaches, though, suggest a compelling
future research direction focusing on abstracting site and
link semantics. Our clustering of sites and links was heavily
motivated by a hypothesis that groups of sites form cohe-
sive classes of concepts (e.g. ‘restaurants’, ‘universities’),
within which there exist prototypical link classes (e.g. for
the ‘restaurants’ concept, ‘menu’, ‘directions’, and ‘reserva-
tions’ links). Our results support this hypothesis, and ex-
tensions to our models should certainly be explored. The

utility of these abstractions can also go beyond simple link
suggestion; we can imagine a system more intelligently rea-
soning about a class of sites and prototypical links in re-
sponse a specific user information need (e.g., ‘find me menus
for restaurants within 3 blocks’).

9. REFERENCES
[1] J. Arguello, F. Diaz, and J.-F. Paiement. Vertical

selection in the presence of unlabeled verticals. In
SIGIR ’10: Proceeding of the 33rd international ACM
SIGIR conference on Research and development in
information retrieval, 2010.

[2] D. Blei and J. McAuliffe. Supervised topic models. In
Advances in Neural Information Processing Systems
20. 2008.

[3] A. Broder. A taxonomy of web search. SIGIR Forum,
36, 2002.

[4] D. Chakrabarti, R. Kumar, and K. Punera. Page-level
template detection via isotonic smoothing. In WWW
’07: Proceedings of the 16th international conference
on World Wide Web, 2007.

[5] D. Chakrabarti, R. Kumar, and K. Punera. Quicklink
selection for navigational query results. In WWW ’09:
Proceedings of the 18th international conference on
World wide web, 2009.

[6] J. Chen, B. Zhou, J. Shi, H. Zhang, and Q. Fengwu.
Function-based object model towards website
adaptation. In WWW ’01: Proceedings of the 10th
international conference on World Wide Web, 2001.

[7] K. Chen, R. Lu, C. K. Wong, G. Sun, L. Heck, and
B. Tseng. TRADA: tree based ranking function
adaptation. In CIKM ’08: Proceeding of the 17th
ACM conference on Information and knowledge
management, 2008.

[8] X. Chen and X. Zhang. A popularity-based prediction
model for web prefetching. Computer, 36(3), 2003.

[9] R. R. Coifman and M. Maggioni. Diffusion wavelets.
Applied and Computational Harmonic Analysis, 21(1),
July 2006.

[10] C. Danescu-Niculescu-Mizil, A. Z. Broder,
E. Gabrilovich, V. Josifovski, and B. Pang. Competing
for users’ attention: on the interplay between organic
and sponsored search results. In WWW ’10:
Proceedings of the 19th international conference on
World wide web, 2010.

[11] B. D. Davison. Predicting web actions from html
content. In HYPERTEXT ’02: Proceedings of the
thirteenth ACM conference on Hypertext and
hypermedia, 2002.

[12] C. Doerr, D. von Dincklage, and A. Diwan.
Simplifying web traversals by recognizing behavior
patterns. In HT ’07: Proceedings of the eighteenth
conference on Hypertext and hypermedia, 2007.

[13] X. Dongshan and S. Junyi. A new markov model for
web access prediction. Computing in Science and
Engineering, 4, 2002.

[14] D. Duchamp. Prefetching hyperlinks. In USITS’99:
Proceedings of the 2nd conference on USENIX
Symposium on Internet Technologies and Systems,
1999.

[15] E. Frias-Martinez and V. Karamcheti. A prediction
model for user access sequences. In WEBKDD

Workshop: Web Mining for Usage Patterns and User
Profiles, ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, July 2002.

[16] J. H. Friedman. Greedy function approximation: A
gradient boosting machine. Annals of Statistics, 29,
2000.

[17] D. Gibson, K. Punera, and A. Tomkins. The volume
and evolution of web page templates. In WWW ’05:
Special interest tracks and posters of the 14th
international conference on World Wide Web, 2005.

[18] T. L. Griffiths and M. Steyvers. Finding scientific
topics. In Proceedings of National Academy of
Sciences. 101, 2004.

[19] S. Gupta, G. Kaiser, D. Neistadt, and P. Grimm.
Dom-based content extraction of html documents. In
WWW ’03: Proceedings of the 12th international
conference on World Wide Web, 2003.

[20] I. Juvina and E. Herder. The impact of link
suggestions on user navigation and user perception. In
UM 2005: Proceedings of the 10th International
Conference on User Modeling, 2005.

[21] E. Kranakis, D. Krizanc, and S. M. Shende.
Approximate hotlink assignment. In ISAAC ’01:
Proceedings of the 12th International Symposium on
Algorithms and Computation, 2001.

[22] S.-H. Lin and J.-M. Ho. Discovering informative
content blocks from web documents. In KDD ’02:
Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining,
2002.

[23] M. Perkowitz and O. Etzioni. Adaptive web sites.
Commun. ACM, 43(8), 2000.

[24] R. Song, H. Liu, J.-R. Wen, and W.-Y. Ma. Learning
block importance models for web pages. In WWW ’04:
Proceedings of the 13th international conference on
World Wide Web, 2004.

[25] R. Srikant and Y. Yang. Mining web logs to improve
website organization. In WWW ’01: Proceedings of the
10th international conference on World Wide Web,
2001.

[26] C. Wang and S. Mahadevan. Multiscale analysis of
document corpora based on diffusion models. In
IJCAI 2009: Proceedings of the 21st International
Joint Conference on Artificial Intelligence, 2009.

[27] R. W. White, M. Bilenko, and S. Cucerzan. Studying
the use of popular destinations to enhance web search
interaction. In SIGIR ’07: Proceedings of the 30th
annual international ACM SIGIR conference on
Research and development in information retrieval,
2007.

[28] Z. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen,
and G. Sun. A general boosting method and its
application to learning ranking functions for web
search. In Advances in Neural Information Processing
Systems 20. 2008.

URLs in the site

de
ns
ity

NON-RELEVANT RELEVANT

H
EA

D
TA

IL

length(u)

de
ns
ity

NON-RELEVANT RELEVANT

H
EA

D
TA

IL
length(block)/length(page)

de
ns
ity

NON-RELEVANT RELEVANT

H
EA

D
TA

IL

links in block / # links in page

de
ns
ity

NON-RELEVANT RELEVANT

H
EA

D
TA

IL
links in block / length(block)

de
ns
ity

NON-RELEVANT RELEVANT

H
EA

D
TA

IL

are u and the site in the same domain?

de
ns
ity

NON-RELEVANT RELEVANT

H
EA

D
TA

IL

(a) Top common features in Gbdt-C

log(#number of visits to u)

de
ns
ity

NON-RELEVANT RELEVANT

H
EA

D
TA

IL

of incoming links to u

de
ns
ity

NON-RELEVANT RELEVANT

H
EA

D
TA

IL

(b) Top head features in Gbdt-HC

Figure 2: Distributions of top features of Gbdt-C and Gbdt-HC models for relevant and non-relevant sets in
head and tail sites. Horizontal and vertical axis scales and ranges within each group of plots are identical.
Axis tick labels removed for clarity.

