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ABSTRACT

Imagine a physician and a patient doing a search on antibiotic resis-
tance. Or a chess amateur and a grandmaster conducting a search
on Alekhine’s Defence. Although the topic is the same, arguably
the two users in each case will satisfy their information needs with
very different texts. Yet today search engines mostly adopt the one-
size-fits-all solution, where personalization is restricted to topical
preference. We found that users do not uniformly prefer simple
texts, and that the text comprehensibility level should match the
user’s level of preparedness. Consequently, we propose to model
the comprehensibility of texts as well as the users’ reading profi-
ciency in order to better explain how different users choose content
for further exploration. We also model topic-specific reading pro-
ficiency, which allows us to better explain why a physician might
choose to read sophisticated medical articles yet simple descrip-
tions of SLR cameras. We explore different ways to build user pro-
files, and use collaborative filtering techniques to overcome data
sparsity. We conducted experiments on large-scale datasets from
a major Web search engine and a community question answering
forum. Our findings confirm that explicitly modeling text com-
prehensibility can significantly improve content ranking (search re-
sults or answers, respectively).

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval Models and
Selection Process

General Terms

Algorithms, Experiments
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1. INTRODUCTION
Many factors explain users’ choices in content consumption,

while observable human behavior often produces a single judg-
ment of utility (e.g., a click) that conflates different factors. Most
prior studies focused on modeling users’ topical preferences (either
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long-term or short-term). Such models, however, may not be able
to explain why users prefer some items over others within the same
topic. For instance, an aeronautics professor and an aspiring tech-
nology journalist writing about rocket science will likely choose to
read very different texts.

We conjectured that users often choose content—consciously or
unknowingly—based on its comprehensibility. The notion of com-
prehensibility is inherently user-specific, as reading more involved
texts may require users to possess adequate background. It is,
of course, also topic-specific; for instance, a renowned professor
might also be a beginner cook, and would therefore prefer easy-to-
understand cooking instructions. In this paper, we build models of
text comprehensibility as well as of users’ reading proficiency, and
use users’ past preferences to predict future content choices. It is
exactly the need to disentangle users’ topical and comprehensibility
preferences that makes this problem difficult.

Given a text fragment, our aim is to measure its degree of sophis-
tication, that is, how easy (or difficult) it is to read for the majority
of users. To this end, we build a classifier for predicting text com-
prehensibility, which uses a host of text readability features mo-
tivated by research in computational linguistics (see Section 2.1).
A note on terminology is in order here. The word “readability” is
used in the literature in a number of different senses, ranging from
the degree of grammaticality of the text, to the degree of fluency in
(automatically-constructed) search summaries [19], to the degree
of difficulty of text as judged by average sentence length and vo-
cabulary size [21, 11, 24, 15]. Here, we use “readability” in the
latter sense, but to avoid possible confusion we opted to use the
term “comprehensibility” instead.

We model users’ reading preferences by analyzing the content
they chose to read in the past. One way to do so is to compute the
average comprehensibility of the texts read by each user. A cru-
cial limitation of this approach, however, is that the absolute com-
prehensibility scores produced by the classifier are not necessarily
comparable across texts on different topics. To circumvent this lim-
itation, we only compare comprehensibility scores of related texts
(e.g., those returned in response to the same search query), and
use such pairwise judgments to compute the probability that the
user prefers easier texts. As one would expect, our experiments
show that the improvement in personalized content ranking is larger
when the user’s comprehensibility preference is more pronounced
(i.e., when the above probability is substantially different from 0.5).

Modeling each user’s overall preference allowed us to observe
that not everyone prefers easy texts (cf. Section 6.1). However,
this general model is necessarily too coarse, hence we refine it by
computing topic-specific comprehensibility preferences. Doing so,
however, is difficult, since the more specific the model is, the more
data is needed to reliably compute it, while many users might have



only read a few texts in each topic, or none at all in some topics. We
tackle this data sparsity by using collaborative filtering techniques.

We use the output of the comprehensibility classifier for improv-
ing the ranking of content in two different scenarios, namely, Web
search and community question answering (CQA). In both cases,
we use historical data (click logs for Web search, and best answer
tags for CQA forums), and develop models that better explain past
user behavior. It should be noted that using historical data at test
time puts us at an inherent disadvantage owing to the position bias,
because a highly-ranked item might have been clicked merely due
to its prominent position rather than true utility. Nonetheless, us-
ing our comprehensibility classifier leads to significant ranking im-
provements on both datasets, despite this disadvantage.

We observe the largest ranking improvements for informational
queries [5] in topics such as “Hobbies & Interests", “Arts & Enter-
tainment", and “Real Estate". Predictably, our approach does not
offer much improvement for transactional queries in topics such as
“Retail”, where other factors (such as product price or brand recog-
nition) may dominate users’ utility judgments.

Modeling the level of text sophistication is an under-studied area,
and we proposed a principled approach to personalized content se-
lection via modeling text comprehensibility. The contributions of
this paper are threefold. We developed a comprehensibility classi-
fier for predicting the sophistication level of a given text, and used
it to build topic-specific models of users’ reading proficiency. Our
approach is entirely based on implicit user feedback, and we evalu-
ated a number of strategies for extracting users’ comprehensibility
preferences from their historically-observed actions. Finally, our
experiments on two large-scale datasets confirm the utility of quan-
tifying text comprehensibility for improved content ranking.

2. METHODOLOGY
Our goal is to better satisfy non-topical aspects of users’ infor-

mation needs in a variety of content selection tasks, ranging from
personalized ranking of Web search results to selecting the best an-
swer (for the asker) in community question-answering forums. In
this section, we use the Web search setting as our running example.

Here we focus on one particular type of preference in content se-
lection, namely, comprehensibility of the relevant content. Differ-
ent users may have their individual preferences for easier or more
sophisticated text, and our aim is to augment relevance-based rank-
ing with comprehensibility-based personalization. To this end, we
need to be able to (a) rank texts that are related to the same narrow
topic (e.g., search results for a query) by their comprehensibility
level, (b) model whether a given user prefers an easier or more
sophisticated content for her current information need, and (c) pro-
duce a personalized ranking. In the remainder of this section, we
describe the algorithms used to address each of these tasks.

2.1 Estimating text comprehensibility

Comprehensibility classifier The simplest way to perform
comprehensibility-based ranking for a set of documents is to build
a classifier that assigns a comprehensibility score to any input doc-
ument. Texts that are topically related to an information need
can then be ranked by their comprehensibility scores to produce
a comprehensibility-based ranking.

It is possible that a global, “topic-agnostic” classifier may not
fully capture topic-dependent aspects of reading difficulty. For sim-
plicity, we introduce a light-weight classifier based on data easily
available online; more sophisticated topic-specific classifiers can
be considered in future work.

We are not aware of existing large-scale labeled resources that
are publicly available and cover a broad range of topics. Thus, we

Table 1: Readability index features used in the classifier.

Flesch [21]: 206.835− 1.015 #words
#sentences − 84.6

#syllables
#words

Flesch-Kincaid [23]: 0.39 #words
#sentences + 11.8

#syllables
#words

− 15.59

Gunning FOG [15]: 0.4( #words
#sentences + 100

#polysyllables
#words

)

ARI [21]: 4.71#characters
#words

+ 0.5 #words
#sentences − 21.43

SMOG [24]: 1.043

√

30
#polysyllables

#sentences + 3.1291

Coleman-Liau [11]: 0.0588L−0.296S−15.8 (L: #letters per 100 words;
S: #sentences per 100 words)

Polysyllables are words with 3 or more syllables.

construct a labeled dataset by extracting pages from Simple English
Wikipedia1 (denoted as WS) and English Wikipedia2 (denoted as
Wen). Articles in Simple Wikipedia are written using Basic En-

glish3, a subset of English with a restricted vocabulary and simple
grammar rules. Many articles in WS can be aligned to correspond-
ing articles in Wen with the same title. Upon discarding overly
short articles, we find 40,032 aligned article pairs4. We label arti-
cles from WS as easy, and those from Wen as hard, and then train
a logistic regression classifier.

We use as features several standard readability indices [21, 11,
24, 23, 15] (Table 1), where word length and sentence length are
used as coarse proxies of semantic difficulty and syntactic complex-
ity. We also include the bag of words features. In order to build a
classifier that is applicable to a broad range of texts, we limit our
vocabulary to the “Basic English 850 word list”5. These unigram
features are weighted by term frequency and L2-normalized.

Comprehensibility score (Sc) The output of the classifier is the
likelihood of the article being hard to read, which we refer to as the
comprehensibility score (Sc).

We report two kinds of performance metrics. First, we compute
standard classification accuracy by comparing Sc with the (global)
threshold of 0.5, which amounts to a binary decision on whether
the text is “easy” or “hard”. However, scores computed for very
different topics are not necessarily comparable, hence we also re-
port the accuracy of pairwise score comparison for each title, that
is, whether the article from WS received a lower score than the cor-
responding one from Wen. The following table reports the above
metrics using 5-fold cross-validation.6

Global threshold Per-title comparison

Accuracy 88.3% 97.4%

As we can see, while the accuracy of using a global threshold is
quite high, the accuracy of pairwise comparison is even higher, as

1http://simple.wikipedia.org
2http://en.wikipedia.org
3
http://simple.wikipedia.org/wiki/Basic_English

4When extracting textual content from HTML, we discard <div>
segments with fewer than 100 characters, and then discard docu-
ments with fewer than 50 words.
5http://simple.wikipedia.org/wiki/Wikipedia:
Basic_English_ordered_wordlist
6We also conducted a small-scale evaluation of Sc scores in the
Web search scenario, where one of the authors judged the relative
difficulty of a pair of search results for 20 queries. 4 of the 20 docu-
ment pairs were found difficult to judge; on the remaining cases the
agreement between the annotator and the classifier was 81.25%.



Figure 1: Comprehensibility score (Sc) distribution for differ-

ent topics. Blue bars indicate 25% and 75% percentiles; red

lines indicate 50% percentile (median).

we get the correct “order” over 97% of the time. This indicates that
Sc is more reliable for comparing comprehensibility of texts on the
same narrow topic than for texts on different topics. To verify this
point, we examine the topical variance of Sc in more details.

Topical variance of Sc Figure 1 shows the topical distribution
of Sc scores for 154 million Web pages (see Section 3.1 for more
details on this dataset). As we can see, a relatively easy article in the
“health & wellness” category might receive a higher Sc score than
a relatively hard article in “hobbies & interests”. This is consistent
with our previous observation that it is more meaningful to use Sc

for comparing documents within the same topic.

2.2 Comprehensibility-based content selec-
tion

Intuitively, different users may have different comprehensibility
preferences, which can further vary on a per-topic basis. We cap-
ture such preferences by building user profiles, which are then used
to modify the relevance-based ranking of available content. We
now describe these two steps in turn.

2.2.1 Modeling user comprehensibility preferences

We describe three methods for building user profiles. We be-
gin with a coarse model that captures a user’s general (topic-
independent) comprehensibility preference, that is, whether the
user tends to prefer easier or more sophisticated content among
search results returned for their queries.

Topic-independent profile (basic model)

For a user u, let a >u b denote the user’s preference of content
item a over b. Suppose we have a method (which we describe in
Section 2.3) to obtain a set of n preference pairs for each user:

Ωpref
u = {(< ai, bi >,wi) | ai >u bi,with weight wi}.

We start with the simple case with equal weights (wi = 1) for
all pairs. Consider a random variable X with a Bernoulli distri-
bution parameterized by p, which takes value 1 if the user prefers
the harder content. Assume we have a sample of size n (X1 =
x1, ..., Xn = xn), corresponding to n preference pairs of content

items, where

xi =

{

1, Sc(ai) > Sc(bi)

0 Sc(ai) < Sc(bi)

(remember the pairs are ordered to reflect the user’s preference for
ai over bi, i.e., ai >u bi). We now estimate p, the probability
of user u preferring harder content (we denote this estimator as
Pu). Let k =

∑

i xi. Since for most users we are dealing with
relatively small n, the maximum likelihood estimator (k/n) is un-
desirable. Instead, we take the Laplace estimator of p, which uses
Uniform(0, 1) as the prior distribution. The posterior estimation of
Pu is thus a function over Ωpref

u :

Pu = f(Ωpref
u ) =

k + 1

n+ 2

Again, in the simplest case, we select content for each user ac-
cording to her estimated Pu, regardless of the topic. We denote this
topic-independent user model as BASIC.

To incorporate weights over the pairs, we can compute a
weighted version:

P (w)
u = f (w)(Ωpref

u ) =
k(w) + 1

n(w) + 2
,

where k(w) =
∑

i wixi, n(w) =
∑

i wi. Clearly this reduces to
Pu when ∀i, wi = 1. Each of the models described in the remain-
der of this section can be similarly modified to have a weighted and
an unweighted version.

Topic-dependent profile

Suppose a set of candidate documents (e.g., top results for a
search query) can be classified into an existing topic hierarchy,
where the node “default” is the root. For each user, we construct a
set of pairwise preferences for each topic Ωpref

u,t from Ωpref
u .

We define an order relationship between two topic nodes in this
hierarchy as follows:

t2 <h t1 ⇔ t2 is a descendant of t1

For each preference pair ppi ∈ Ωpref
u , let ti be its topic (e.g., the

topic of the query associated with the pair), and let

Ωpref
u,t = {ppi ∈ Ωpref

u |ti ≤h t}.

For any reasonably sized Ωpref
u,t (i.e., |Ωpref

u,t | > θ), we compute

Pu,t = f(Ωpref
u,t ) similarly to the BASIC model above.

Clearly, we will not obtain enough observations for every pos-
sible (u, t) pair to reliably compute Pu,t, especially for the topics
residing deep down in the hierarchy. As a coarse approximation,
we can fall back to using the topic-independent (BASIC) model if
necessary. For an incoming query, we consider the top-level topic
node t corresponding to the topic predicted for this query. If Pu,t

can be estimated, we use Pu,t for personalized content selection;
otherwise, we fall back to Pu. We refer to this model as TOPICAL.

Collaborative Filtering

In order to alleviate this data sparseness problem (i.e., lack of
topic-specific preferences) in a more principled manner, we build
upon the work in collaborative filtering. That is, if there exist
certain correlations between the comprehensibility preferences for
some topics, then we can analyze the observed comprehensibility
preferences over all (user, topic) pairs, and predict comprehensibil-
ity preferences for unseen ones.

Formally, let nu be the number of users, and nt be the number of
topics. We construct a matrix Gnu×nt , where Gij is the likelihood
of user i preferring harder content in topic j as estimated from ob-
served data. Note that for cells (i, j) with no observed data, Gi,j



should receive the same value as an “average” user. We achieve
this by computing the global mean of all Pu,t values (estimated
from observed data) as g = 1∑

u

∑
t I(Pu,t 6=0)

∑

u

∑

t Pu,t, and let

Gut =

{

Pu,t − g, Ωpref
u,t 6= ∅

0, otherwise.

This way, the cells with no observations and the cells corresponding
to the “average” user receive the value of 0.

Note that this formulation is slightly different from the standard
collaborative filtering setting, where the non-zero entries in the ma-
trix are actual observations (e.g., ratings given by a user to an item).
In our case, we manipulate estimates (Pu,t) rather than actually ob-
served values, and the estimates are for a small number of topics
rather actual observations over a much larger set of “items”, as in
the standard setting.

We adopt the maximum-margin matrix factorization approach
from the collaborative filtering literature, where we compute an ap-
proximation of G with a low-rank decomposition UTV . That is,
we want to minimize the following objective function:

∑

i,j,Gij 6=0

||UTV(ij) −Gij ||
2 + ||U ||F + ||V ||F

We use CofiRank [36] to solve this optimization problem. Once we
obtain the optimal U and V , we compute

Gcf = UTV + g.

For test queries, we first proceed as in TOPICAL, but when Pu,t

cannot be reliably estimated, we fall back to Gcf
ut computed using

the above collaborative filtering approach. The default Pu is only
used when the topic of the content can not be determined (e.g., a
query receiving the “default” category). We denote this user model
as COLLABORATIVE.

2.2.2 Combining the Rankings

We cast the content selection problem as a ranking problem. In
the Web search scenario, we have an initial relevance-based ranking
(as returned by the search engine), and we want to adjust it to bet-
ter satisfy users’ comprehensibility preferences. In the community
question-answering scenario, our task is to rank answers so that the
answer chosen as the best one by the asker ranks at the top. In the
latter case, there might not exist any native ranking of answers on
the site, and we can either produce a ranking purely based on com-
prehensibility preferences or implement quality-based measures to
produce an initial ranking.

Here, we consider the general case where we have an original
topic-relevance-based ranking R over a set of documents D. Previ-
ous work in the personalized search literature has combined topical
relevance with (topical) personal preferences by simply comput-
ing the sum of the global relevance score (R) and the personalized
ranking score. Our approach differs in several aspects.

Let R(d) be the rank of d ∈ D given by R. Let Ru be the
ranking over D in descending order of the comprehensibility score
Sc. Here, we slightly abuse the notation and use Pu to denote a
user profile built using any of the three models introduced in Sec-
tion 2.2.1. We then produce the combined ranking by ordering
items in ascending order of the following value

R(d) + β ∗ (2 ∗ Pu − 1) ∗Ru(d) (1)

First, we have a global parameter β, which controls the relative
importance of comprehensibility (Ru). We also vary the impor-
tance of Ru depending on how pronounced the user’s comprehen-
sibility preference is, that is, how much Pu deviates from 0.5. Fur-

thermore, we need to reverse Ru if the user prefers easier content
(Pu < 0.5). Thus, we multiply the second term by (2 ∗ Pu − 1) to
incorporate personalized adjustment over the global β.

2.3 Generating pairwise preferences
We now describe corpus-dependent methods for generating pair-

wise comprehensibility preferences for two different types of
datasets, Web search click logs and best answers in CQA sites.

2.3.1 Web search click log

As discussed in Section 7, click logs are often used for extract-
ing user preferences. Using different models of how users browse
search result pages, prior work has examined different ways of re-
constructing user preferences that account for position bias [17, 18,
27, 10]. We considered three methods for extracting pairwise pref-
erences: two as proposed by Joachims et al. [18], and a variation
over the second method (which is new to the best of our knowl-
edge).

Let’s consider a toy example to examine the differences between
the three methods. Suppose we have a search result page with 5
results (l1, l2, ..., l5). Suppose the user clicked on l2 and l4.

The first method is the classical Click > Skip above. Here the
assumption is that users browse results in the order of presentation,
and each clicked result is “better” than those presented earlier (i.e.,
viewed) and not clicked. For our toy example, this yields three
preference pairs: l2 >u l1, l4 >u l1, and l4 >u l3.

DEFINITION 1. Click > Skip above (CSA)

For a ranked list (l1, l2, l3, . . .) and clicked position set C for user

u, we define

lj >u li, if i < j, i /∈ C and j ∈ C.

The second method accounts for the noise in click data, and only
trusts the last clicked item to be “better” than those skipped. For
our toy example, this yields l4 >u l1 and l4 >u l3.

DEFINITION 2. Last click > Skip above (LCSA)

For a ranked list (l1, l2, l3, . . .), a clicked position set C for user u,

and the position of the (temporally) last clicked item LC, we define

lj >u li, if i < j, i /∈ C and j = LC.

The third method makes a stronger assumption that the last item
the user clicked is the one that finally satisfied the user’s informa-
tion need, while all the items above it, including those clicked, are
inferior. For our toy example: l4 >u l1, l4 >u l2, and l4 >u l3.

DEFINITION 3. Last click > All above (LCAA)

For a ranked list (l1, l2, l3, . . .), a clicked position set C for user u,

and the position of the last temporally clicked item LC, we define

lj >u li, if i < j and j = LC.

Preference weighting Traditionally, when pairwise preferences
are used in learning to rank, each pair carries the same weight.
Intuitively, the closer in position two results are, the more likely
they are similar in their topical relevance, and the more confi-
dence we have that the implied preference is due to non-topical
(i.e., comprehensibility) reasons. Thus, for each pairwise prefer-
ence lj >u li, we compute a weight as a function of their dis-
tance w = 2−(j−i−1). For example, using LCSA, we would obtain
(l4, l1, 0.25) and (l4, l3, 1).

2.3.2 Best answers in CQA forums

Consider a community-based Q&A site such as Yahoo! Answers,
where the asker can label one of the answers as the best answer. If
there are n answers for a question, we can simply form a prefer-
ence pair between the best answer and all the other n− 1 answers.



Since n can vary greatly from question to question, and we want
the asker’s preference on each question to carry roughly the same
weight, we take each preference pair with weight 1/n.

3. DATA

3.1 Search dataset
Our search dataset was sampled from one month (May, 2011) of

Yahoo! Web Search query logs. After filtering adult content, the
dataset underwent the following pre-processing steps.

In order to focus on search intents that are meaningful for
comprehensibility-based personalized search, we filtered out navi-
gational queries using an automatic navigational query classifier, as
well as all search sessions that only resulted in one click on the first
result, which are also highly likely to have navigational intents.

We then crawled the content of all Web pages returned as one
of the top 10 results for queries in our data7, and applied our com-
prehensibility classifier to these pages. It should be noted that the
user’s decision to click on a search result is based on the snippet
presented on the search result page, before they view the content
of the chosen URL. However, applying the comprehensibility clas-
sifier to the search snippets is problematic since most snippets are
broken text segments, and those that happen to have longer “sen-
tences” (in order to include search terms) will have higher Sc. In-
stead, we aggregated all Web pages at the domain level, and used
the domain-averaged Sc as the smoothed Sc for each page. Intu-
itively, this captures the comprehensibility reputation of a domain,
which can influence users’ clicking decisions. Indeed, previous
work has found aggregation of information at the domain level to
be beneficial [25, 7].

Each page in our dataset was classified into a proprietary class hi-
erarchy, which had 17 top-level nodes (cf. Figure 1), and 216 nodes
in total; “default” was assigned to pages when the classifier had low
confidence. The statistics shown in Figure 1 were computed over
the 154,650,334 pages with non-default class assignments. Simi-
larly, a class label from the same topic hierarchy was assigned to
each query based on its search results [6].

The processed data was then split into three parts chronologi-
cally: the first 20 days were used as training data, the next 5 days
as development data, and the last 5 days as test data.

Clearly, we cannot expect to produce reasonable personalization
for users who have barely clicked on any results before. Thus, we
limited our study to users with at least 10 queries and at least one
click logged in the training data. We randomly selected 424,566
users to form our search dataset.

3.2 Answers dataset
Yahoo! Answers is a community question-answering site. An

asker posts a question, which may receive multiple answers from
other users. The asker has an option of choosing one of the answers
as the best answer.8 We focused on questions with more than one
answer, among which a best answer was chosen by the asker. We
obtained a dump of Yahoo! Answers data between January, 2010
and April, 2011, where all questions (and answers) in 2010 were
used as the training data, and the 4 months in 2011 were used as
the test data (development data was not needed here, as there are no
parameters to tune for this dataset). We randomly selected 85,172
users who have posted at least 10 questions in the training data, and
restricted the test set to these users. Our dataset consists of a total of
4.9 million questions and 39.5 million answers. Each answer in the
dataset received an Sc score from the comprehensibility classifier.
7Queries with fewer than 8 results were removed from the dataset.
8If the asker does not pick the best answer, a community vote is
opened to choose the best answer. We disregarded such cases.

Table 2: 18 configurations: 3 methods to generate pairwise

preferences × weighted / unweighted × 3 user profile models

Preference generation methods Weighting User profile models

CSA (Click > Skip above) Weighted BASIC

LCSA (Last click > Skip above) Unweighted TOPICAL

LCAA (Last click > All above) COLLABORATIVE

4. EXPERIMENTS ON SEARCH DATA
We now evaluate the effectiveness of our approach in Web

search.

4.1 Evaluation Measures
Following Dou et al. [14], we employ two measures to evaluate

our approach to personalized search.

Average Clicked Rank In Web search, average clicked rank for
query s is defined as

AvgRanks =
1

|Cs|

∑

p∈Cs

R(p),

where Cs denotes the set of clicked Web pages for query s, and
R(p) denotes the rank of page p. The final average rank for the
entire test query set S is the average of AvgRanks values:

AvgRank =
1

|S|

∑

s∈S

AvgRanks

Lower average clicked rank values indicate better performance.

Rank Scoring The score of a ranked list of Web pages is defined
as

Rs =
∑

j

δ(s, j)

2(j−1)/(α−1)
,

where j is the rank of a page in the list, δ(s, j) is 1 if page j is
clicked for the test query s and 0 otherwise, and α is set to 5 [14,
31, 4]. The final rank scoring is aggregated over all test queries as
follows:

R = 100

∑

s Rs
∑

s R
Max
s

RMax
s is the maximum possible score when all clicked pages ap-

pear at the top of the ranked list. Larger rank scoring value indi-
cates better performance.

4.2 Experimental setup
We report performance for the following systems:

• Baseline: The original ranking in which the search engine
presented results to the users. Only the top 10 results from
the original ranking were passed to our methods to compute
personalized re-ranking.

• Our approach: We presented three different ways to generate
pairwise preferences from click logs (Section 2.3.1), which
can be either weighted or unweighted, and three user profile
models (Section 2.2.1). In total, we have 3 ∗ 2 ∗ 3 = 18
configurations of our methods (summarized in Table 2). The
threshold θ (described in Section 2.2.1) was set to 5.

Under the evaluation measures defined in Section 4.1, our
method is at a disadvantage compared to the baseline owing to the
position bias: if we re-rank a result that was previously displayed
at position 10 (with no clicks observed) to a position higher in the



page, this penalizes our performance, but it could be that the user
would have liked this result had they viewed it. One might want to
restrict the re-ranking to only position 1 through the lowest clicked
position. This avoids penalizing us unfairly by excluding results
that might not have been viewed by the user; however, this would
also give us an unfair advantage: a random re-ranking within this
set is very likely to improve over the baseline (according to the
above metrics). Consequently, in our experiments we report the
former comparison, which is to our disadvantage: re-ranking top 10
results and comparing against the original ranking using the metrics
described in Section 4.1.

User saliency For ease of presentation, we also define the notion
of user preference saliency as

Qu = |Pu − 0.5|,

where for each given configuration, Pu is the user preference
computed under that particular combination of parameters. We
expect that for users with higher saliency, the improvement of
comprehensibility-based personalization would also be more pro-
nounced, and we would be interested in the improvements obtained
in each bucket of user saliency. To this end, for each configuration
of our method, we rank users according to Qu, and report improve-
ment over the baseline for top k% users, for different values of k.9

We tuned the β parameter (Eq. 1, Section 2.2.2) on the develop-
ment set, and obtained the best performance with β = 0.4. Thus,
the importance of comprehensibility-based ranking is roughly be-
tween 20% and 30% compared to the original topical-relevance-
based ranking, for users with extremely pronounced preferences.

4.3 Results
First, we take one of the configurations (WEIGHTED-LCAA

+COLLABORATIVE) to make a few high-level observations. Fig-
ure 2 plots the improvement measured in both average clicked rank
and ranking score. We observe that the improvement is indeed
more pronounced for users with higher saliency. Computed over all
queries for the top 0.1% most salient users, the average improve-
ment is more than 0.5 in averaged clicked rank, and close to 7.0
in ranking score. While the improvement is smaller for less salient
users, we do obtain a significant improvement for all users,

(a) Average Clicked Rank (b) Ranking Score

Figure 2: Improvement over baseline: computed on all queries

and on non-repeated queries only.

9Note that since the top k% users are different for different config-
urations of our method, the corresponding baseline for that subset
of the users can also be different. Instead of comparing raw perfor-
mance numbers across different methods, we only report the im-
provement over the corresponding baseline performance, which is
more comparable across different methods.

Note, however, that a significant portion of queries submitted by
users are repeated queries [14, 33]. Previous work has shown that
using a memory-based method can be highly effective for repeated
queries [14]. While our method is not directly “remembering” the
actual URLs clicked by the user in the past for repeated queries, it
can indirectly promote the previously clicked URLs.10 Thus, per-
formance improvement over repeated queries may not reflect the
utility of comprehensibility preferences, and for the rest of Section
4, we focus our analysis on non-repeated queries.

As shown in Figure 2, while the improvement over non-repeated
queries is less pronounced, we do obtain a similar trend, which is
consistent in both measures. As discussed in Section 4.2, we focus
on the improvement over the baseline. To provide a reference point,
the performance of the baseline system is 3.6 using average clicked
rank, and 74.4 using ranking score for the entire test set.

Next, we examine the improvements achieved by different con-
figurations (on non-repeated queries) in more details.

4.3.1 Overall analysis over non-repeated queries

Table 3 shows paired t-test results (using average clicked rank)
for different configurations of our method versus the baseline, for
top 10% and 50% (ranked by Qu), and all users.

First, for the top 10% most salient users, all configurations sig-
nificantly outperform the baseline. All improvements are statis-
tically significant; many are highly significant with P < 0.001.
Even when we consider the entire set of users, several variations
yield highly significant improvements. That is, modeling user pref-
erences in text comprehensibility does help achieve better content
ranking in Web search, despite the adversarial experimental setup
as explained in Section 4.2.

The effect of weighting the preference pairs also turns out to
be quite prominent. Visually, we can readily notice there are
more stars in the WEIGHTED section of the table than in the UN-
WEIGHTED section. Compared over 50% of all users, the UN-
WEIGHTED versions tend to be less effective in beating the baseline
than their WEIGHTED counterparts. This conforms to our intuition
that preferences based on search results that are closer in position
are more useful in modeling comprehensibility.

Among different user profile models, BASIC is more robust than
COLLABORATIVE when we consider less salient users. If we fix
the user profile model to be BASIC, and compare different pair-
generation methods, CSA and LCAA beat the baseline more sig-
nificantly than LCSA.

4.3.2 Improvements for high-saliency users

One reasonable setting is to enable comprehensibility-based per-
sonalization only for users with higher Qu. The method (e.g., BA-
SIC) that consistently beats the baseline for all users does not nec-
essarily achieve the best performance for the high-saliency ones.
Indeed, if we focus on the top 10% most salient users, WEIGHTED-
LCAA +COLLABORATIVE achieves the biggest improvement over
the baseline. We now examine this in more details.

Figure 3 summarizes the improvements in both average clicked
rank and ranking score for a variety of settings. Figures 3(a) and
3(d) show the performance of WEIGHTED-LCAA +COLLABORA-
TIVE. For the top 0.1% users, the improvement reaches 0.35 in
average clicked rank, and almost 4.0 in ranking score. (Recall the
performance of the strong baseline is around 3.6 in average clicked

10Note that a memory-based method will need to record all (user,
query, clicked URL) pairs, and our method uses a much more com-
pact representation. But an in-depth exploration of the performance
tradeoff for this purpose is beyond the scope of this paper.



(a) Users with different saliency (b) Different user profile models (c) WEIGHTED vs. UNWEIGHTED

Improvement in Average Clicked Rank

(d) Users with different saliency (e) Different user profile models (f) WEIGHTED vs. UNWEIGHTED

Improvement in Ranking Score

Figure 3: Performance analysis focusing on high-Qu users: comparing WEIGHTED-LCAA +COLLABORATIVE with its variations.

Table 3: Paired-t test for different methods against the baseline,

computed for top 10%, 50%, and all users. We mark t-test

results as follows: *(p < 0.05), **(p < 0.01), ***(p < 0.001)

Method 10% 50% 100%

WEIGHTED

CSA

BASIC *** *** ***
TOPICAL *** *** ***

COLLABORATIVE *** ***

LCSA

BASIC ** * *
TOPICAL *** ** **

COLLABORATIVE *** ***

LCAA

BASIC *** *** ***
TOPICAL *** *** ***

COLLABORATIVE *** ***

UNWEIGHTED

CSA

BASIC *** *** ***
TOPICAL ***

COLLABORATIVE ***

LCSA

BASIC **
TOPICAL **

COLLABORATIVE ***

LCAA

BASIC *** ** **
TOPICAL ***

COLLABORATIVE ***

rank and about 74.4 in ranking score.) As expected and observed
previously, performance degrades as we include less salient users.

We compared the improvement achieved by this configura-
tion against other configurations using t-test. Keeping the same
pair-generation technique (LCAA), it statistically significantly
(P < 0.05) outperforms all other variations. However, its dif-
ferences compared with WEIGHTED-CSA +COLLABORATIVE and
WEIGHTED-LCSA +COLLABORATIVE are not statistically signif-
icant. At least for the top 10% users, different user profile models
and the weighting scheme have more impact on the performance.

We now examine the effect of varying only the user profile model
and only the weighting scheme over the best model, for the most
salient 1% to 10% users.

Different user profile models

In contrast to our observations in Section 4.3.1 (where COLLAB-
ORATIVE was found to be less robust than BASIC when compared
to the baseline for all the users), for the top 1%-10% users, COL-
LABORATIVE outperforms both BASIC and TOPICAL. Fixing the
other parameters to WEIGHTED-LCAA, we plot the improvement
achieved by using different user models (Figures 3(b) and 3(e)).
While TOPICAL performs only slightly better than BASIC, COL-
LABORATIVE consistently outperforms both (statistically signifi-
cant at P < 0.05 using t-test for top 10% users). This validates the
effectiveness of modeling topic-specific comprehensibility prefer-
ences, as well as the necessity to employ collaborative filtering
techniques to combat the sparseness in historical observations.

Different weighting schemes



Here we perform a direct comparison between WEIGHTED and
UNWEIGHTED, and our findings reinforce the observations made in
Section 4.3.1. As shown in Figures 3(c) and 3(f), our best configu-
ration outperforms all other UNWEIGHTED variations using LCAA

(statistically significant at P < 0.05 using the t-test for top 10%
users). Interestingly, the difference between COLLABORATIVE and
BASIC in the UNWEIGHTED setting is also less pronounced when
more low-Qu users are included (e.g., compare Figures 3(b) and
3(c) at the higher percentage of users).

4.4 Further analysis
In Section 4.3, we focused on performance break-down by user

saliency. In this section, we examine the performance observed
when using other ways to partition the data (measured at top 10%
users using WEIGHTED-LCAA +COLLABORATIVE).

Improvement by topics The following table shows the improve-
ments over the baseline in different topics.

Topic Ranking Score Average Rank

hobbies & interests 0.3550 0.0325
arts & entertainment 0.3517 0.0327
real_estate 0.2868 0.0302
society & culture 0.2094 0.0181
business & financial_services 0.1845 0.0195
technology & electronics 0.1519 0.0153
sports & recreation 0.1375 0.0155
employment & career 0.1038 0.0088
health & wellness 0.0778 0.0073
professional_services 0.0744 0.0059
education 0.0512 0.0065
retail 0.0426 0.0021
automotive 0.0362 0.0063
science & nature 0.0338 -0.0003
green 0.0336 -0.0000
home & garden 0.0258 0.0019
travel -0.0521 -0.0008

In general, the topics with larger improments tend to be informa-
tional in nature (e.g., real estate, society & culture, business & fi-
nancial services, and technology & electronics). On the other hand,
for topics that are more transactional in nature (e.g., travel, home
& garden), where comprehensibility may have less importance for
users’ information needs, we did not achieve similar improvements.

Per-query content variance For search results of a query, we can
compute the variance in Sc. Figure 4 shows the improvement for
different buckets of variance values. Most of the pages have a vari-
ance smaller than 0.3, and the plot focused on 3 buckets. The im-
provement increases as the variance increases from 0.1 to 0.2. This
conforms to our intuition that comprehensibility-based personal-
ization is more effective when the search results actually vary a
lot in their comprehensibility. Interestingly, as the variance further
increases to 0.3, the improvement decreases. This could happen
because the higher variance in Sc can be partially attributed to top-
ical differences, where the topical-relevance-based ranking needs
to play a bigger role.

In our future work, we plan to incorporate both the query topic
and the content variance in Sc to further improve our model.

5. EXPERIMENTS ON ANSWERS
We conducted a preliminary study on the Yahoo! Answers

dataset. The goal here is to rank the answers posted to a question,
based on the asker’s personal comprehensibility preference.

Experimental setup To evaluate a given ranking, we simply mea-
sure the position of the best answer chosen by the asker in that
ranking. Unlike the search data, there is no native ranking provided
on Yahoo! Answers to use as a baseline or in rank combination.

(a) Average Click Rank (b) Ranking Score

Figure 4: Improvement vs. variance in Sc.

We experimented with the following systems:

• Random baseline: answers were ranked in random order.
This baseline allows us to study whether comprehensibility
preferences have any signal in predicting the best answer.

• Majority baseline: we take the preference of the majority of
askers and does not allow personalization. On answers data,
we observed Pu > 0.5 for an average user (i.e., a preference
for harder content), thus we rank answers in decreasing Sc

for all askers. This can be viewed as a proxy of a quality-
based ranking since very low Sc could correlate with low-
quality content in this domain.

• Our model: for answers data, we only have one pair-
generation technique. We used the BASIC user profile that
takes WEIGHTED preference pairs. As there is no native
ranking to combine with, we simply rank the answers by in-
creasing Sc if Pu < 0.5, and by decreasing Sc otherwise.

Results The table below summarizes the performance. We show
the rank of the gold-standard best answer for different percentage
of users (sorted in decreasing order by Qu). That is, lower values
indicate better performance. Shown in brackets are paired t-test
results versus the random and the majority baseline, respectively:
*(p < 0.05), **(p < 0.01), ***(p < 0.001).

Fraction of users Random Majority Our model

5% 3.375 2.947 2.895 (***, ***)
10% 3.596 3.096 3.079 (***, ***)
100% 4.525 4.093 4.149 (***, )

Both the majority baseline and our model beat the random base-
line, and the improvements are highly significant. For users with
lower saliency (i.e., 100%), the majority baseline, which may par-
tially approximate answer quality, performs better. But for the top
5% and top 10% most salient users, our model is significantly better
than the majority baseline. This indicates that modeling personal-

ized comprehensibility preferences is helpful in identifying the best
answers for different users.

6. DISCUSSION

6.1 User Preference in Search Data
Across all users, Pu averages at 0.493 (using the BASIC method).

11 That is, among the search results returned to their queries, on av-
erage users have a slight preference towards easier content. We now

11Through out this study, we use LCAA unless specified otherwise.



address the following question: if we partition the data in differ-
ent ways, will we consistently observe more users preferring easier
content?

In what follows, we partition the users by their interests in differ-
ent topics, as well as by gender and age. We rank the users by Qu,
and focus on the 60% most salient users (whose comprehensibility
preferences are most pronounced). For each data partition, we re-
port the percentage of users with Pu > 0.5 (denoted as Rh). The
higher Rh is, the higher percentage of users prefer harder content.
(Recall that the preference encoded in Pu is relative to the results
returned for a given query, rather than an absolute preference for
easy or hard content.)

The figure below shows Rh for different topics. We observed a
smaller percentage of users who prefer harder content in “technol-
ogy & electronics”, compared to topics like “health & wellness”.
We conjecture that for personally more important health-related
content such as in “health & wellness”, more people are willing to
put in the effort to read more sophisticated content. (Alternatively,
it could be due to search engine returning overly complicated re-
sults in “technology & electronics”.)

We also conducted a study on users whose demographical in-
formation is available. The figure below shows how Rh changes
with gender and age. There is a slightly larger percentage of fe-
male users who prefer more sophisticated content (which could be
partially correlated with different topical interests between the two
genders). For different age groups (binned at 5 year increments),
Rh peaks around the age of 25. In comparison, there is a smaller
percentage of users preferring harder content among teenagers and
seniors. In future work, such demographic information can be used
to provide a better prior for users with insufficient data.

6.2 Discussion of design choices
In this work, we build user profiles using pairwise preferences

(Section 2.2.1). In a preliminary study on search data, we experi-
mented with an alternative approach, where we estimated the user’s
reading proficiency based on the average comprehensibility score
of the (search result) pages she clicked on. We trained a variety
of classifiers on a smaller-scale dataset, but did not observe any
improvement over the baseline. We believe the model based on
preference pairs is better suited for extracting comprehensibility-
related signals from a search click log, where topical preferences
and comprehensibility preferences may be conflated. Note that our
framework allows us to build user profiles while accounting for

(a) Gender Study (b) Age Study

position bias (Section 2.3). It also assigns different weights to pref-
erence pairs to focus more on pairs with a smaller difference in
topical relevance. Perhaps more subtly, Pu captures user prefer-
ences relative to the search results for a given query, and does not
compare comprehensibility scores of results from different topics,
which may differ widely (Figure 1). Thus, if a user tends to formu-
late queries that trigger easier content than what he needs, he would
tend to click on the harder results, which would lead to a higher Pu,
even if the results clicked by the user do not necessarily receive a
high Sc in terms of absolute value.

7. RELATED WORK
There are several bodies of prior research that are relevant to

our study, namely, those focusing on text readability, personalized
content selection, and collaborative filtering.

Text readability has been long studied in linguistics, and a num-
ber of (manually-tuned) readability indices have been proposed,
such as the Gunning FOG Index [15], Flesch-Kincaid Index [23],
Coleman-Liau Index [11], and others [21, 24]. Recent research
employed statistical methods to quantify text readability. Collins-
Thompson and Callan [13] predicted reading difficulty using statis-
tical language modeling, which they showed to be superior to clas-
sical readability indices on a Web corpus. Schwarm and Ostendorf
[29] used Support Vector Machines and statistical language mod-
els. Heilman et al. [16] combined lexical and grammatical features
to quantify readability of first and second language texts. Pitler and
Nenkova [26] employed readability measures to predict text qual-
ity. Bendersky et al. [3] formulated the notion of document quality,
which captures text readability, layout, and ease of navigation, and
showed it to be beneficial for document ranking. Several studies
proposed ways to quantify answer quality in CQA forums [1, 32].

Personalized search was the focus of many studies that modeled
users’ interests in terms of topical relevance [34, 22, 9]. Dou et al.
[14] studied different personalized search methods using click logs,
and found the memory-based method to perform best. Teevan et al.
[35] explored the utility of personalization for different types of
queries. Recently, White et al. [37] argued that search experience
can be improved by modeling user’s domain expertise.

Arguably, the most related prior work is that by Collins-
Thompson et al. [12], who studied personalization of Web search
results by reading level. One key difference between our work
and theirs is that they explicitly modeled 12 reading levels corre-
sponding to the 12 US school grades. In contrast, we devised a su-
pervised comprehensibility classifier based on the comparison be-
tween Simple English and regular English Wikipedia, as explained
in Section 2.1. Our experiments also go beyond Web search, as
we include results on Yahoo Answers as well. Finally, we employ



collaborative filtering techniques to alleviate data sparsity. In their
follow-up work, Kim et al. [20] jointly model reading level and
topic distribution.

Collaborative Filtering There is a vast body of work in collab-
orative filtering, and a comprehensive survey is not possible here.
Most relevant to our work is the Maximum-Margin Matrix Factor-
ization approach, which has been shown to be highly effective in
recent work [28, 30, 2]. Cao et al. [8] formulated a collaborative
ranking model for analyzing search click logs in a way that ac-
counts for the position bias and alleviates data sparsity. Sun et al.
[31] employed the (user, query, page) tensor built from click logs
to improve personalized search.

8. CONCLUSION
We developed a unified framework for personalized content se-

lection using text comprehensibility. We showed that modeling
text comprehensibility can significantly improve content ranking,
in both Web search and a CQA forum. We built a comprehensi-
bility classifier to predict the sophistication level of a given text,
and used it to construct topic-specific models of users’ reading pro-
ficiency. Our approach is based on implicit user feedback, using
search click logs or best answer tagging in CQA forums. We eval-
uated a number of strategies for extracting users’ comprehensibil-
ity preferences from their historically-observed clicks, and found
that manipulating pairwise preferences is far superior to merely av-
eraging absolute comprehensibility scores across different topics.
We also found that weighting preference pairs by position distance
is beneficial, and also validated the effectiveness of collaborative
filtering techniques in tackling data sparsity, which is inherent in
modeling users’ topic-specific preferences.

We believe that modeling text comprehensibility holds a lot of
promise for personalizing content selection beyond topical rele-
vance. Here we developed a text comprehensibility classifier by
comparing pairs of Web pages. An immediate extension to this
work would be to develop a comprehensibility-aware classifier of
answers quality. In our future work, we plan to develop more so-
phisticated comprehensibility classifiers, as well as incorporate the
difficulty of queries and questions into our framework.
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