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ABSTRACT
Web applications often rely on user profiles of observed user
actions, such as queries issued, page views, etc. In audience
selection for display advertising, the audience that is likely
to be responsive to a given ad campaign is identified via such
profiles. We formalize the audience selection problem as a
ranked retrieval task over an index of known users. We focus
on the common case of audience selection where a small seed
set of users who have previously responded positively to the
campaign is used to identify a broader target audience. The
actions of the users in the seed set are aggregated to con-
struct a query, the query is then executed against an index
of other user profiles to retrieve the highest scoring profiles.
validate our approach on a real-world dataset, demonstrat-
ing the trade-offs of different user and query models and
find that our approach is particularly robust for small cam-
paigns. The proposed user modeling framework is applica-
ble to many other applications requiring user profiles such
as content suggestion and personalization.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing

General Terms
Algorithms, Experimentation

Keywords
Retrieval models, audience selection, ad targeting

1. INTRODUCTION

“Half the money I spend on advertising is wasted;
the trouble is I don’t know which half.”
– John Wanamaker (attributed).
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Display advertising is the placement of graphical ads dis-
played on web pages alongside the original content. In dis-
play advertising, targeting is often performed by categoriz-
ing users into standard segments (e.g., auto, health) based
on their online activities. However, such pre-defined seg-
ments might be too broad and poorly aligned with audience
partitioning by the advertiser. This mismatch has led to the
emergence of the current trend of advertiser-centric charac-
terization of audiences. One popular approach for the adver-
tisers is to characterize their desired audience by providing
a small seed set of existing customers as examples for iden-
tifying additional prospective customers who are similar to
those in the seed set, and are likely to “respond” to the ad-
vertiser’s campaigns. This problem formulation is referred
to as audience selection.

There are multiple ways to identify users similar to the
seed set. One possible approach is K-Nearest Neighbors
(KNN) modeling, however, KNN is less effective in very high
dimensional spaces. Another possibility is to use Collabora-
tive Filtering (CF) techniques, however, CF requires a suffi-
ciently long history of user-item interactions. In our scenario
we only have a few observations of users’ prior interactions
with ads, and many fewer prior purchases or conversions.
Furthermore, unlike CF, where user interests are mostly sta-
tionary (e.g., a preference trend for action movies), in online
advertising users’ interests and needs change over time.

We formulate the audience selection problem as a retrieval
problem. We build rich user profiles using their entire on-
line experience and explore two retrieval approaches inspired
by language modeling and vector space models. Given the
seed set of positive examples (users) for the advertiser, we
construct a query, in a way that is reminiscent of relevance
feedback in IR. This query is then executed against the index
of all other users (potential customers), and used to identify
users for targeting the advertiser’s campaign. This method
allows for very efficient audience selection when searching
over a large space of users.

Our setting differs from that of conventional ad-hoc IR in
several interesting ways. First, natural language documents
indexed by IR systems are usually fairly coherent around a
single topic (or several related topics). On the other hand,
users’ online history are composed from numerous, often un-
related activities. Furthermore, the events we observe (e.g.,
Web searches, page views, ad clicks) are heterogeneous and
contain varying amounts of information, hence reconciling
them into a single user profile is an important research task.
Additionally, users’ interests evolve over time. The change
in their interests can be either personal (e.g., planning a va-



cation), or can reflect a global trend (e.g., a popular movie).
Finally, in contrast to conventional IR, which judges the rel-
evance of retrieved documents, we focus on maximizing the
conversion rate, namely, the fraction of (retrieved) users who
purchase the product or service being advertised.

2. METHODOLOGY
Given the seed set of users U = {s1, s2, ...s3} who have

previously converted on a given campaign, our goal is to rank
other users by their conversion potential. We approach this
problem within the information retrieval paradigm, develop-
ing two alternative representations for indexing users. First,
we consider language modeling (LM), a generative model
where documents are generated by a multinomial distribu-
tion estimated through maximal likelihood over a document
collection. We represent users as sequences of their observed
events, hence we can talk about the probability of “generat-
ing”a user by estimating the probability of observing a given
event sequence. Our second approach is based on the vector
space model (VSM), which maps documents and queries into
a space defined by their features.

2.1 User representation
We represent a user by the set of events u = {e1, e2 . . . en}

she has performed over a given history span. Each event is a
triplet ei =< typei, inti, ci >, where typei denotes the event
type, inti is the time interval, and ci is the event content.

An event type describes the nature of the event, such as
a page view, ad click, etc. An event occurs at a specific
time, and events are grouped in time intervals of varying
length, ranging from 1 day to 1 month. Time intervals span
non-overlapping continuous ranges of user activity, and to-
gether cover the whole period of user activity. Different
intervals can be assigned different weights, effectively “de-
caying” the importance of older events. Finally, the event
content contains the observed information about the event,
usually in textual or numeric form, i.e., ids of ads viewed,
the text of search queries issued, etc. We employ the bag of
words method for modelling content strings, like queries, us-
ing both unigrams and bigrams, as well as nodes of a topical
taxonomy that represent more general text categories.

An important research question is how to reconcile differ-
ent events (ie queries the user issued two weeks ago, with
ad clicks from the last minute) in a single model. Each of
these cues can provide a valuable signal, yet heterogeneous
nature and large volume of user activity would make very
noisy representation if all combined in a single bin. To this
end, we propose to represent users as a two-dimensional ar-
ray of models, where we build a separate model (whether
a language model or a vector space model) for each com-
bination of a time interval and event type (see Figure 1).
For example, if our time intervals are week-long, we have a
separate model for the user’s page views each week, as well
as an additional models for her search queries issued each
week. Each entry of this two-dimensional array contains a
single model built over the concatenation of the content of
all the events of the same type observed in the given inter-
val. We build a single user model by learning weights for
the different cells of the two-dimensional array.

2.2 Language modeling for audience selection
Language modeling (LM) has been successfully applied to

representing documents and queries in textual information

retrieval. LMs are often favored for their competitive perfor-
mance, clean formalization and probabilistic interpretation.

User model.
Language models are generative models, where each user

is assigned a probability of being generated. This probability
is computed by estimating the probability of the sequence
of events observed for this user. With a simplifying assump-
tion of independence between events, we can transform this
probability into a product of the probabilities of individual
events. In this form, the model assumes a multinomial dis-
tribution over the space of events: p(u) = p(e1, e2 . . . en) =
p(e1)p(e2|e1)p(e3|e2e1) . . . p(en|e1e2 . . . en−1) ∼

∏
i∈1...n p(ei).

A common strategy to alleviate the independence assump-
tion in document retrieval models is to define composite fea-
tures or n-grams. Similarly, here we can define composite
events that are based on commonly performed actions, e.g.,
submitting a query followed by browsing the top search re-
sults. While we do not present experiments with this type
of features, they can be easily facilitated by our model.

We further develop this model by considering the struc-
ture of events, namely, their time interval, type, and con-
tent: p(u) =

∏
i∈1...n p(ei) ∼

∏
i∈1...n{p(inti) ·p(typei|inti) ·

p(ci|inti, typei)}.
The probability of each event is estimated using three

components: (1) the probability of observing an event in the
given time interval (p(inti)), (2) the probability of observ-
ing in that interval an event of the given type (p(typei|inti)),
and (3) the probability of observing a specific event content
given the interval and the event type (p(ci|inti, typei)).

The model is simplified by assuming that the activity of
the user proceeds with constant frequency. That is, p(inti) is
proportional to the length of the interval, and

∑
int∈T p(int) =

1, where T is the entire history span. A further simplifica-
tion can be made by assuming that the mix of event types
does not depend on the interval: p(type|int) ∼ p(type), that
is, the ratio between the number of page views, queries and
other event types stays constant. Although this assumption
does not necessarily always hold, our intervals are usually
fairly long (several days), hence the assumption is not vio-
lated too much in practice.

To compute p(ci|inti, typei), we use standard modeling
techniques to generate the content of the events. The prob-
ability of the textual content of the event is generated based
on the probability of individual words: p(ci|inti, typei) =∏
w∈ci p(w|inti, typei), where w stands for a word from the

event content and∑
w p(w|inti, typei) = 1. These word probabilities are es-

timated using the maximum-likelihood estimator over the
aggregated content of all events of a given type in a given
time interval. We used Laplace smoothing.

Query construction.
The query for audience selection is very different from

than in standard retrieval tasks. In the standard docu-
ment retrieval, the query is essentially a short fragment of
text. In the audience selection task the query is created
from a set of seed users, and contains more events than
an individual user might. To develop an adequate query
representation, we build upon the work on language model-
ing with relevance feedback [16]. There, the query is com-
posed by merging several documents (users in our case).
Conceptually, we treat the seed set of users as relevance
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Figure 1: Component models of the user and query.

feedback from the advertiser. The query is thus calculated
by finding a language model θq that is close to the mod-
els of the users in the seed set, but far from the other
users (the collection background model) [16]: p(w|θq) =
exp( 1

1−µ
1
n

∑n
i=1 log p(w|θ

i)− 1
1−µ log p(w|C)), where θi are

the models for the users in the seed set, C is the background
model composed of all other users, and µ is a parameter
learned on a validation set. By subtracting the background
model we are emphasizing those words/events in the query
that discriminate positive users from the rest. Note that
this approach is reminiscent of the Rocchio method [12].

Scoring functions.
We use two alternative LM scoring paradigms. First, as

in standard language modeling, we score users based on
the query likelihood — the probability of the query be-
ing generated using the user’s language model: p(q|u) ∼∏
w∈q p(w|θ

u), where θu is the language model of the user
u. To compute θu, we separately analyze the content of
events for each combination of interval and event type. More
precisely, we manipulate an array of models, θuint,type. The
user model is then computed as a combination of individ-
ual models for different intervals and events types (in a way
that is reminiscent of the mixture language models [2, 17]):
p(w|θu) =

∑
int,type λint · λtype · p(w|θ

u
int,type). To make the

model simpler, we opted to reduce the number of parame-
ters and to learn one parameter for each time interval and
event type (λint and λtype, respectively) from the held-out
validation set, instead of learning one parameter for each
possible combination (i.e., λint,type). Figure 1 illustrates
how the query and user models are compared when each is
represented as a two-dimensional array of language models.

In the second scoring paradigm we use the model compar-
ison approach. Drawing on the language modeling work for
relevance feedback, we use KL-Divergence to compare the
query and the user sub-models: KL(θu, θq) =

∑
w∈u∪q p(w|θ

q)·
log p(w|θ

q)
p(w|θu)

. Note that log-likelihood is a special case of KL-

divergence when the model does not use smoothing, but in
our case these two represent different metrics. Here we also
compare an array of models, as shown in Figure 1.

2.3 Vector space models for audience selection
Users are represented in our framework as a set of events

we observed for them, where each event is a triplet of its
time interval, type, and content. In essence, we first con-
struct a meta-document by concatenating the content of all
the events of the same type in the same interval. Then, we
represent this meta-document as a TFIDF vector of its bag
of words. Each user profile is then represented as a weighted
combination of such vectors, where the weights are learned

on a validation set:
∑
int,type ϕint·ϕtype·V SMint,type. Again,

to make the model simpler, we reduce the number of pa-
rameters and learn one parameter for each time interval and
event type (ϕint and ϕtype, respectively). In order to com-
pute V SMint,type, we experimented with several TF and
IDF formulations (Table 1), and used dot product as the
distance metric to compare query and user vectors.

Query construction using the Rocchio algorithm.
We use the Rocchio approach to incorporate pusedo rele-

vance feedback and compose the queries [12] for our vector
space model. As a first approximation, we construct the
query from two sets of users—the seed set of positive ex-
amples (U) who converted on this campaign, and a set of
negative examples (V ′) sampled from the rest of the users
(who did not convert on this campaign): ~q = ρ · 1

|U| ·∑
~u∈U ~u − τ · 1

|V ′| ·
∑

~u′∈V ′⊂U
~u′.

Since conversion rates are usually very low, the set of con-
verted users is small, which leads to extreme data sparsity
over a rich feature set. To this end, we also experimented
with augmenting the seed set of users who converted with an
additional set (Uclick) of pseudo-positive users, who clicked
on the ad but did not convert (a similar approach was used
in [1]). The assumption behind this approach is that the
users who clicked on the ad found it relevant at least to some
degree, and might still convert later: ~q = ρ · 1

|U| ·
∑
~u∈U ~u+

σ · 1
|Uclick| ·

∑
~u′∈Uclick

~u′ − τ · 1
|V ′′| ·

∑
~u′′∈V ′′⊂U

⋃
Uclick

~u′′,

where V ′′ ⊂ U
⋃
Uclick is a subsample of negative examples.

In both formulations, values of the free parameters ρ, σ
and τ are estimated on held-out validation data.

3. EXPERIMENTAL SETUP
We randomly selected 34 different display ad campaigns,

which were registered on the Yahoo Advertiser Network.
All these campaigns are performance-based, i.e., advertis-
ers only pay for actual conversions. Of the 34 campaigns,
some had only 30-50 conversions per week on average, while
others receive many thousands of conversions every week.

User who either viewed, clicked, or converted on the ads
from the three week period from 02/04/2010 to 02/24/2010
were identified. Users who converted for campaign c in the
first two weeks make up our (positive) seed user set U for c
(Section 2.3). The first 2 days of the final week make up the
validation set for parameter tuning, and the last 5 days for
the test set. In total there were more than 150K validation
and 450K test instances across the 34 campaigns.

Each user’s profile is constructed from four weeks online
activity preceding the user’s ad view. Note that while pre-
dicting a test instance, say on day t, we access user history
up to day t− 1. Hence, the method is not using any future
information.

3.1 Evaluation Metric
One way to evaluate the ranked list of users produced

by the different audience selection methods is to use the Re-
ceiver Operating Characteristic (ROC) curve. A ROC curve
plots true positives versus false positives for different classifi-
cation thresholds. The Area Under Curve (AUC) for a ROC
curve is the probability that the audience selection method
assigns a higher score to a random positive example than a
random negative example (i.e., probability of concordance).



Term Frequency Document Frequency Normalization
n (natural) n(d, t) n (no) 1 n (none) 1

r (ratio) n(d,t)∑
t′∈d n(t

′,d) t (idf) log( N
df t

) c (cosine) 1√
w2

1+w
2
2+...+w

2
M

l (log) 1 + log(n(d, t)) p (prob idf) max{0, log(N−df t
df t

)}

b (boolean)

{
1, if n(d,t) > 0
0, otherwise

r (PrTFIDF [7])
√

N
dft

Table 1: TFIDF variants we experimented with.

So, a purely random selection method will have an area un-
der the curve of exactly 0.5. An algorithm that achieves
AUC of 0.6 can distinguish a positive user from a negative
user with 60% accuracy.

4. RESULTS
We begin by evaluating Vector Space Modeling (VSM)

and for Language Modeling (LM), and vary one parame-
ter at a time to study its effect. In most cases, the effect
of varying parameter values was similar for VSM and LM,
suggesting that both approaches use the information in the
data in a similar way; consequently, owing to lack of space
we present parameter exploration results only for the VSM
model.

While an AUC of 0.8 or more is common in many re-
trieval tasks, note that the audience selection task is inher-
ently much more difficult than standard textual query-based
retrieval. This is due in part because conversions are ex-
tremely rare and there are no true negative examples. Users
who did not convert right away might still convert later.
To put the sparsity into perspective, in the literature re-
searchers have often found it to be difficult to predict clicks
where the click-through rates are very small (e.g. 0.01 for
certain applications) [3, 8, 11]. Conversions are usually two
to three orders of magnitude rarer than clicks. Additionally,
there are a multitude of activities in the user profiles that
may not be relevant to the conversion.

4.1 Initial Results
For the initial vector space model we set TF to n(d,t)∑

t′∈d n(t
′,d)

(ratio), IDF to max{0, log(N−df t
df t

)} (prob idf), without nor-

malization. In this configuration all events were put into a
single time interval and one event type (i.e., only one cell
in the two-dimensional array of Figure 1). We study the ef-
fect of these parameters later. The query from the seed set
was constructed using the Rocchio algorithm with weights
ρ = 1, σ = 0, and τ = 1 and dot product was used to score
the users. Using this configuration, macro-averaged across
all campaigns achieved an AUC of 0.65. Figure 2 shows the
performance breakdown of the VSM model over individual
campaigns. For some campaigns our approach does remark-
ably well (and achieves 0.90 AUC), while for some others
the model does not perform any better than random guess-
ing. In Section 4.6 we analyze these results and attempt to
understand the variation in performance across campaigns.

For the language modeling approach, we use the query
construction method as described in Section 2.2. Again, we
use a single time interval and merge all the events as if they
were of the same type (i.e., effectively consider one event
type for this experiment). Overall, we found that the lan-
guage modeling approach performed on par with the vector
space one. In our experiments log-likelihood had a AOC

of 0.66, better than both KL-divergence which had a ROC
score of 0.63 and VSM score of 0.65.

4.2 The effect of relevance feedback
Recall from Section 2.3 that the query is constructed from

the seed set of relevant users and a set of non-relevant users,
with ρ and τ representing their weights in the query compo-
sition (we discuss the effect of using clicks to create pseudo-
positive examples later). Figure 5 illustrates the effect of
these two parameters.

Note that when τ = 0, the query is being constructed us-
ing only the relevant users. Even though many retrieval sys-
tems use only positive feedback [10], in our experiments we
found that negative examples can help significantly. For ex-
ample, the performance goes up from 0.62 to 0.65 when the
ratio τ

ρ
is increased from 0 to 1. However, further increasing

the value of τ
ρ

causes the non-relevant users to overwhelm
the relevant users, which in turn hurts the performance.

When compared on the per campaign basis, using non-
relevant users leads to superior performance for most cam-
paigns (over 80%). The increase in performance over the
model from Section 2.3 is illustrated in Figure 3. Augment-
ing the seed set of converted users with users who clicked
on ads but did not convert (which we called pseudo-positive
examples) resulted in only a negligible improvement in AUC.

4.3 The effect of using time intervals
We represent the user history with a two-dimensional ar-

ray of time intervals and event types. In section 2.3 we
used one bucket of time, yet user histories are four weeks
long in our dataset. We divide them into equi-width inter-
vals where each interval is w days long. We vary the value
of w from 1 to 28. We learn the importance weights λint
for each time interval using the validation set. When width
w is small, it allows us to capture finer patterns in the user
history. On the other hand, by making w smaller, we reduce
the amount of content in each cell of this two-dimensional
array. This leads to data sparsity and worsens the individual
cell-based scores computed for a user. For example, while a
user and query may match reasonably well when their ag-
gregated representation of a whole week, when compared on
a daily basis they may look much less similar.

The best performance comes from w = 28, i.e., when the
entire user history is put into one interval (Figure 6). This
shows that the performance loss due to sparsity when w
is decreased, outweighs the benefit of capturing finer user
patterns. When w < 28, we found that the model learned
higher weights for more recent intervals than the older ones.
For example, with w = 10 we get the weight of 0.76 for the
most recent interval, 0.19 for the second interval, and only
0.05 for the oldest one. This shows that recent activities are
a better indicator of conversion likelihood, as expected.
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4.4 The effect of event types
User history consists of different kinds of events (such as

page views, ad clicks and the like). Instead of treating them
collectively as done in the previous experiments, each event
is divided into four event types: page views, search queries,
organic and sponsored result clicks, and ad views. As de-
scribed in Section 2.3, we construct a separate representation
for each event type, score them, and then take a weighted
linear combination of these scores (where the weights for
the different event types, λtype, are learned using the valida-
tion set). By doing so, we achieved a marginal improvement
of 0.005 in AUC over the 0.65 AUC achieved by the base-
line (Section 4.1). More interestingly, we found that some
event types are much more indicative of user interests than
others. In Figure 7, we show the weights learned for the
different event types using the validation set. Browsed page
views seem to help the most in predicting conversions. Even
though one might expect page views to be less predictive
than other event types such as queries and clicks, in our
dataset they have higher density (i.e., much more events of
this type) compared to other event types.

4.5 TFIDF Variants
TFIDF weighting of features has been central to the vector

space models. The success of the TFIDF weighting scheme is
due to its capturing the importance of features both within
the document (TF) and in the entire collection (IDF).

In traditional IR, the TF function is based on the number
of occurrences of the term within the document, namely, the
raw term frequency which we will denote by nu,t. In user
modeling there are multiple ways of defining nu,t. We con-
sidered (1) number of days on which feature t appeared in
the (time interval, event type) cell for user u (ie #days) and
(2) number of times feature t appeared in the (time inter-
val, event type) cell for user u (ie #occurrences ). While
both forms of nu,t perform fairly similar, the best perfor-
mance comes from the #days definition of nu,t. A likely

explanation is that it captures sustained user interest in an
activity for a conversion to happen. Additionally, #days is
more robust, e.g., some Web pages reload automatically and
can dramatically bloat the number of the occurrences, while
their adverse effect on #days is significantly limited.

We evaluate four different forms of TF defined in terms of
nu,t: boolean, log, natural, and ratio and different forms of
and IDF functions (see Table 1). The results are shown in
Figure 4. First, we note that the rightmost bar corresponds
to no TFIDF weighting, i.e., TF =nu,t (natural), IDF =1
(no). It achieves an AUC of 0.56 while our best setting
achieves AUC = 0.65. This shows the significance of TFIDF
weighting in the vector space model for users.

Among the various TF forms, TF =
nu,t∑

t′∈u nu,t′
(ratio) is

consistently the best across all forms of IDF. This is re-
markable because we normally expect more active users to
be more likely to convert, and vice versa. However, this TF
form, normalized with respect to the total amount of user
activity, shows that it is not necessarily the case. Instead, it
is the user activity in a specific topic relative to her overall
activity that leads to the best prediction performance.

Among the IDF variants, we found max{0, log(N−df t
df t

)}

(prob idf) to perform the best, with log( N
dft

) and
√

N
dft

tak-

ing the second and third spot.

4.6 Individual Campaigns
To investigate the variation in performance over individ-

ual campaigns, we divided the campaigns into 3 sets, large,
medium and small, where the large group contains the top
one-third of the campaigns with the highest number of con-
versions, while the small group contains the bottom one-
third. We found that our approach performs well in all
three groups, in fact it does better on the medium (0.657)
and small (0.673) campaigns compared to the large ones
(0.624). Since most methods suffer when they are trained
on fewer positive examples, this is a nice advantage of our
approach, as it seems it can be applied to these tail/small



campaigns, where other methods, especially discriminative
ones, struggle to perform. This can also explain why our
approach did not benefit much from using pseudo-positive
examples based on users who clicked on the ads but did not
immediately convert. These pseudo-positive examples typi-
cally prove helpful on small campaigns where there are few
positive examples. However, our approach already performs
well on those campaigns.

In further analysis of large campaigns we found that these
campaigns are quite diverse and are thus associated with a
variety of goals (ad groups, in computational advertising
terminology), and thus different kinds of users convert on
them. In other words, there is more heterogeneity among the
seed users in these campaigns (compare to the smaller ones),
and when these diverse users are combined together during
the query construction process, they weaken the signal and
hurt the performance of our approach.

5. RELATED WORK
Audience selection/segmentation is an important task in

marketing. Since customers have diverse interests and needs,
marketing strategies that target individual segments per-
form better than a single global strategy for the entire pop-
ulation [6]. In this paper we formulated the problem of audi-
ence selection in display advertising within the IR paradigm.

Our approach has similarities to user profiling and behav-
ioral targeting based on observed past events. A commonly
used approach in behavioral targeting is to infer user inter-
ests and use them to predict whether she will be interested in
a product. Chen et al. [4] proposed a linear regression model
to leverage user behavior for predicting ad clicks. However,
learning regression models for conversions is difficult since
conversions are typically several order of magnitude fewer
than clicks. Another difficulty in modeling user behavior is
that user interests are not always fixed, and some interests
are transient, influenced by media and pop culture. Shmueli-
Scheuer et al. [13] used a decay model to predict clicks to give
recent features more emphasis. In their analysis of query in-
terests, Wedig et al. [14] found that users tend to stabilize on
a distribution of interests. In contrast, Liu et al. [9] found
that user interests change from month to month based on
their analysis of news topics and attributed this change to
the task of browsing news (compare to the task of issuing
queries studied by Wedig et al. [14]).

In their empirical study on understanding the potential
of behavioral targeting for online advertising, Yan et al.
[15] studied how ad click-through rates relate to the search
queries and page views of the users who clicked on these
ads. They found that users who clicked on the same ads
tend to have more behavioral similarities than users who
clicked on different ads. Our work builds on this hypothesis
to perform audience selection, where we model user simi-
larity using multiple sources of information, such as page
views, clicks on search results, and the like, and not only ad
clicks. We also focus on conversions rather than clicks. In
particular, we first construct a query based on the seed set
of users who converted in the past, and then execute this
query against an index of user profiles. This allows us to
retrieve more users who are similar to the seed set, and are
therefore likely to convert in the future.

6. CONCLUSION
In this paper, we formulated the problem of audience se-

lection as an information retrieval task, retrieving user pro-
files instead of documents. These profiles are constructed
based on users’ online actions such as browsing and search-
ing. Unlike documents, which are often coherent units, user
activity is composed of multiple events at distinct time points,
each potentially having distinct intent. We then defined a
formal retrieval model for the audience selection task based
on language modeling and vector space modeling.

We found that both vector space and language models per-
formed well for this task. We also found that using TFIDF
feature weighting, as well as using a set of non-relevant users
for Rocchio-style query expansion significantly improves per-
formance. Although recent activity proved more important
than past activity, bucketing based on time intervals de-
graded performance, as it led to the sparsity of data.
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