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ABSTRACT
In contrast to traditional Web search, where topical rel-
evance is often the main selection criterion, news search
is characterized by the increased importance of freshness.
However, the estimation of relevance and freshness, and es-
pecially the relative importance of these two aspects, are
highly specific to the query and time the query was issued.
In this work, we propose a unified framework for modeling
the topical relevance and freshness, as well as their relative
importance, based on click logs. We use click statistics and
content analysis techniques to define a set of temporal fea-
tures, which predict the right mix of freshness and relevance
for a given query. Experimental results on both historical
click data and editorial judgments demonstrate the effective-
ness of the proposed approach.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation

Keywords
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1. INTRODUCTION
When a user submits the query “Apple Company” into a

news search engine, she is expecting to find a list of most re-
cent news reports that are topically relevant to the company.
The emphasis on recency is crucial, as even the seemingly
current events can quickly become outdated, dwarfed by the
importance of new developments. For example, the news ar-
ticles covering the release of iPhone 4S were quite relevant
on Oct 4, 2011; however, they became less relevant just one
day later, when Apple Inc.’s former CEO Steve Jobs passed
away. Such cases are common in news search and make it
different from the traditional web search, where “relevance”
is typically narrowly defined as topical relatedness. In web
search, a great amount of effort has been devoted to de-
signing effective retrieval features and models to improve

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2012, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1229-5/12/04.

the estimation of topical relevance [22, 15, 4, 11, 20]; how-
ever, for news search much less work has been done to take
freshness into account. The importance of content recency
in news search suggests extending the conventional notion
of relevance beyond pure topical match, by incorporating
freshness as another important ranking criterion.1
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CTR curve over time for different queries

URL1@abc the bachelorette 2011
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URL2@casey anthony

URL1@toy story 4

URL2@toy story 4

Figure 1: CTR curves over 8 different URLs over a
two-month period.

Incorporating freshness into news ranking is not a triv-
ial exercise of combining relevance and freshness scores, as
users’ search intents need to be taken into consideration.
For breaking news queries, as in our previous example, re-
turning most recent news would always improve users’ satis-
faction. In other cases, for newsworthy queries such as “bin
laden death”, preferring older but more relevant reports, in
terms of coverage and authority, makes more sense. Previous
studies have shown that the relationship between returned
documents and queries varies as users’ intent in web search
changes over time [17, 19]. To demonstrate this phenomenon
in news search scenario, we select 8 most frequently returned
URLs under 4 different queries (2 URLs per query) from Ya-
hoo! news search engine2 in a period of two months (late
May to late July, 2011). Two of these queries have the high-
est search frequency within one day, namely, “toy story 4”
and “casey antony”, and the other two have the longest life-
time span over this period, i.e., “abc the bachelorette 2011”

1In what follows, we use the term “relevance” to only refer
to topical relatedness to avoid ambiguity.
2http://news.search.yahoo.com/



and “immigration reform 2011”. We illustrate the Click-
Through Rate (CTR) curves for these 8 URLs during the
above period in Figure 1 and list the corresponding URLs
in Table 1.

Table 1: URL list for Figure 1

Entry URL

URL1@ abc the
bachelorette 2011

http://blog.zap2it.com/frominsidethebox/2011
/06/tv-ratings-bachelorette-leads-abc-again-
monday-stanley-cup-numbers-rise.html

URL2@ abc the
bachelorette 2011

http://www.broadcastingcable.com/article
/470053-Primetime-Ratings-
Bachelorette-Drops-ABC-Still-Wins-
Monday.php?rssid=20065

URL1@ immigra-
tion reform 2011

http://biz.yahoo.com/prnews/110526/
la10138.html?.v=1

URL2@ immigra-
tion reform 2011

http://seattletimes.nwsource.com/html/
editorials/2015089638-
edit19dream.html?syndication=rss

URL1@ casey an-
thony

http://www.cnn.com/2011/CRIME/06/04/
casey.anthony.weekly.wrap/index.html?section
=cnn-latest

URL2@ casey an-
thony

http://www.cnn.com/2011/CRIME/06/03/flori
da.casey.anthony.trial/index.html?eref=rss-
us

URL1@ toy story 4 http://theenvelope.latimes.com/news/la-
et-at-toy-story-4-oscar-
sl,0,1068280.storylink?track=rss

URL2@ toy story 4 http://1019litefm.radio.com/2011/06/28/toy-
story-4-might-happen/

From the CTR curves, we can clearly observe the dif-
ference between these two types of queries. For the query
“casey antony”, the CTR for the returned URLs quickly di-
minished because new stories came out soon. On the other
hand, for the query“abc the bachelorette 2011”, users’ inter-
est was maintained over much longer periods of time. In the
latter case, the URLs contained summary report, and users
found them useful long after this TV episode was shown.
These results imply that users’ preferences are highly de-
pendent on the query as well as its issuing time.
Given the highly dynamic nature of news events and the

sheer scale of news reported around the globe, it is often im-
practical for human editors to constantly keep track of the
news and provide timely relevance and freshness judgments.
Since machine learned ranking methods often depend on ed-
itorial judgments [20], delayed and inaccurate annotations
can mislead the learning algorithms. To this end, Dong et
al. [8] designed a set of crawling mechanisms and editorial
guidance to annotate the relevance and freshness. Then they
used the freshness grade to demote the relevance grade when
computing the final ranking score. However, we believe such
rule-based demotion is often sub-optimal. To validate this
conjecture, we asked editors to annotate the news query log
for the day of Aug. 9, 2011 immediately one day after, and
then demoted the news search results based on their judg-
ments using the algorithm of Dong et al. [8]. The relation
between observed CTR and the demoted grades is visualized
by a scatter plot in Figure 2.
From Figure 2, we see that the clicks are not strictly corre-

lated with the demoted grades: the average Pearson correla-
tion between them across the queries is 0.5764 with standard
deviation 0.6401. The main reason for this inconsistency is
the hard demotion rule: users might have different demotion
preferences for different queries, and it’s almost impossible
for an editor to predefine the rules given the plurality of pos-
sibilities. As a result, the uncertainty from this heuristically-
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Figure 2: Scatter plot of CTR versus editor’s rele-
vance judgments

derived ranking grades will limit the performance of subse-
quent learning-to-rank algorithms.

In this work, we propose to model relevance and freshness,
and the query-specific relative mix of these two aspects si-
multaneously from the click logs. We assume the users’ click
behavior for the given query depends jointly on both the
relevance and freshness of a news article. To this end, we
introduce a latent factor model, Joint Relevance Freshness
Learning (JRFL), which captures the relevance and fresh-
ness aspects, as well as the latent preference between the
two, in a unified way. To capture the temporal sensitivity
of both news documents and queries, a set of effective tem-
poral features, utilizing click statistics and content analysis
techniques, is proposed. We evaluate the proposed method
on both click data and editorially annotated sessions. Ex-
perimental evaluation confirms that the proposed learning
method outperforms several standard learning-to-rank al-
gorithms, which cannot properly handle the query-specific
trade-off between relevance and freshness.

The contributions of our joint learning method are two
folds:

1. The relevance and freshness are jointly learned from
the click logs, which avoids defining any hard combi-
nation rules for relevance and freshness ahead of time ,
and such query-specific preference is directly estimated
from the data.

2. Our method does not require any manually annotated
data, making it applicable in a broad spectrum of re-
trieval tasks, where task-specific ranking criteria can
be easily incorporated.

2. RELATED WORK
Learning-to-rank algorithms have shown significant and

consistent success in various applications [20, 13, 25, 5].
Such machine-learned ranking algorithms learn a ranking
mechanism by optimizing particular loss functions based on
editorial annotations. An important assumption in those
learning methods is that the “relevance” of documents for
a given query is generally stationary over time, so that, as
long as the coverage of the labeled data is broad enough, the
learned ranking functions would generalize well to future un-
seen data. Such assumption is often true in web search, but
less likely to hold in news search because of the dynamic
nature of news event and lack of timely annotations, as we
have analyzed in Section 1.



Recency ranking is an emerging research topic to tackle
the time-sensitive ranking problems in web search. Li et al.
[19] and Efron et al. [10] came up with solutions from a con-
tent analysis perspective, by introducing document publica-
tion timestamp into language models. However, the tempo-
ral property for both queries and documents are not limited
to timestamps alone; various signals are available to depict
it. Dong et al. [8] designed a system to automatically detect
and response to recency sensitive queries. Later on, features
extracted from Twitter3 stream were incorporated to iden-
tify fresh URLs [9]. But their learning method depended
on a predefined freshness-demotion strategy, which does not
necessarily lead to optimal generalization performance. In
another effort by Moon et al. [21], user clicks were combined
with a baseline ranking system to capture temporal shifts of
a user’s information need in recency search. However, they
only used clicks for the highest ranked article to update their
ranking model, thus did not make full use of click data.
The closet work to ours is Dai et al.’s divide-and-conquer

learning strategy for recency ranking [7], although their work
was substantially different from ours. First, they still relied
on the manual relevance/freshness annotations to train the
rankers, where a weighted harmonic mean was used to inte-
grate the relevance and freshness labels. In JRFL, we do not
require such manual annotations — relevance and freshness
are automatically learned from the clickthroughs, resulting
in greater flexibility in our model. Second, they did not
model relevance and freshness separately, but instead used
one ranker on all the features. In our method, we learn the
relevance and freshness models separately from two differ-
ent sets of features. The separation allows the two models
to focus better on different aspects of a document (namely,
freshness and relevance). Third, the importance weights be-
tween relevance and freshness were manually tuned in their
harmonic mean, while our method uses a set of query-specific
features to adaptively combine freshness and relevance, and
the adaptation is automatically learned from real clicks.
Since we are learning to optimize different ranking crite-

ria, our work is also related to multi-object ranking. Svore et
al. proposed to optimize multiple graded ranking measures,
e.g., NDCG and CTR, by combining the gradients from dif-
ferent object functions in the framework of LambdaMART
[23]. Agarwal et al. used a constrained optimization frame-
work to encode multiple objectives for clicks and post-click
downstream utilities in content recommendation systems [1].
The problem tackled by JRFL is somewhat different: we still
try to optimize the information utility of a ranking list, al-
though the utility is not directly observed and is affected
by two criteria (relevance and freshness) in an unknown and
query-specific way. Our goal is to simultaneously learn, from
click data, the two criteria as well as the best combination
of them.

3. METHOD
Suppose, when a user submits a query to a news search en-

gine and gets an according list of ranked news documents,
she would first judge the usefulness of each document by
her underlining sense of relevance and freshness, and gives
it an overall impression grade by her preference over rele-
vance and freshness at that particular time. Once she has

3http://twitter.com/

such impressions in mind, she would deliberately click the
documents most interesting to her and skip all the others.

Inspired by this example, we proposed to model the users’
click behavior in news search as a direct consequence of ex-
amining the relevance and freshness aspects of the returned
documents. Besides, for different queries, the relative em-
phasis the users put over these two aspects can vary sub-
stantially, reflecting the searching intention for the specific
news event. Therefore, a good ranking function should be
able to infer such a trade-off and return the “optimally com-
bined” ranking results for individual queries. However, we
cannot explicitly obtain the users’ relevance/freshness judg-
ment and the preferences over these two aspects, since their
evaluation process is not directly observable from the search
engine. Fortunately, the users’ click patterns are recorded,
from which we can assume the clicked documents are more
meaningful to her than the non-clicked ones [14]. There-
fore, we model relevance and freshness as two latent factors
and assume a linear combination of these two, which is also
latent, generates the observed click preferences.

To better determine the temporal property of the news
documents and detect the recency preference imposed for the
query, we design a set of novel temporal features from click
statistics and content-analysis techniques. In the following
sections, we will introduce the proposed model and temporal
features in detail.

3.1 Joint Relevance and Freshness Learning
The basic assumption of our proposed Joint Relevance

Freshness Learning (JRFL) model is that a user’s overall
impression assessment by combining relevance and freshness
for the clicked URLs should be higher than the non-clicked
ones, and such a combination is specific to the issued query.
Therefore, our method falls in to the pairwise-learning-to-
rank framework.

Formally, we have N different queries and for the n-th
query we observed M different URL click preference pairs
(Uni ≻ Unj), in which Uni is clicked but Unj is not. We de-
note XR

ni and XF
ni as the relevance and freshness features for

Uni under Query Qn, and SR
ni and SF

ni are the correspond-
ing relevance score and freshness score for this URL given by
the relevance model gR(X

R
ni) and freshness model gF (X

F
ni),

respectively. In addition, we denote αQ
n as the relative em-

phasis on freshness estimated by the query model fQ(X
Q
n ),

i.e., αQ
n = fQ(X

Q
n ), based on the features XQ

n describing
query Qn. To make relevance/freshness scores comparable
across all the URLs, we require 0 ≤ αQ

n ≤ 1. As a result,
the user’s latent assessment Yni about the URL Uni for a
particular query Qn is assumed to be a linear combination
of its relevance and freshness scores:

Yni = αQ
n × SF

ni + (1− αQ
n )× SR

ni (1)

Since we have observed the click preference (Uni ≻ Unj), we
can safely conclude that Yni > Ynj .

Based on the previous discussion, we characterize the ob-
served pairwise click preferences as the joint consequences
of examining the combined relevance and freshness aspects
of the URLs for the query. For a given collection of click
logs, we are looking for a set of optimal models (gR, gF ,
fQ), which can explain the observed pairwise preferences as
many as possible. As a result, we formalize this pairwise



learning problem as an optimization task,

min
fQ, gR, gF , ξ

1

2
(∥fQ∥+ ∥gR∥+ ∥gF ∥) +

C

N

N∑
n=1

∑
i,j

ξnij (2)

s.t. ∀(n, i, j), URLni ≻ URLnj (3)

Yni − Ynj > 1− ξnij

0 ≤ fQ(X
Q
n ) ≤ 1

ξnij ≥ 0,

where Yni and Ynj are defined in Eq (1), the non-negative
slack variables {ξnij} are introduced to account for noise
in the clicks, ∥ · ∥ is functional norm (to be defined later)
describing complexity of the models, and C is the trade-off
parameter between model complexity and training error.
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Figure 3: Intuitive illustration of the proposed Joint
Relevance and Freshness Learning model. The user
issued query and the corresponding returned URLs
are represented by their features on the left part.
Dashed arrow lines in the middle indicate the as-
sumed user’s judging process before she clicks. The
check boxes on right record the clicked URLs.

Figure 3 depicts the intuition behind JRFL. From the fig-
ure, we can clearly notice the difference between our pro-
posed JRFL and other classic pairwise-learning-to-rank al-
gorithms, e.g., RankSVM [13] and GBrank [25]. A clas-
sic pairwise-learning-to-rank algorithm only uses one scor-
ing function to account for all the observed click prefer-
ences, where different ranking criteria cannot be easily in-
corporated. Besides, even though RankSVM model shares
a similar object function as JRFL, they are still quite dif-
ferent: JRFL simultaneously learns a relevance model and a
freshness model, and utilizes a query-specific model to lever-
age these two aspects together to explain the observed click
patterns. Neither RankSVM nor GBRank deal with such
query-specific multi-criterion ranking. Besides, as we have
discussed in Section 2, in previous studies [8, 7], SR

ni and SF
ni

for each URL are already known, and they tune αQ
n directly

for each type of query. In our method, all those factors are
latent and estimated automatically from the click logs.
In our previous description, we didn’t specify the forms of

the relevance model gR(X
R), freshness model gF (X

F ), and
query model fQ(X

Q). Although many alternatives exist, we
choose linear functions for all these models to simplify the
exposition and derive efficient model estimation procedures.
Other types of functions can also be employed, although nu-

merical approximation is unavoidable in general when opti-
mizing their model parameters.

Formally, we use three linear models:

gR(X
R
ni) = wT

RX
R
ni (4)

gF (X
F
ni) = wT

FX
F
ni (5)

fQ(X
Q
n ) = wT

QX
Q
n (6)

where the bias factor b in linear functions is excluded by
introducing the dummy feature 1.

As a result, the proposed JRFL method defined in Eq(2)
can be instantiated as:

min
wR,wF ,wQ,ξ

1

2
(∥wQ∥2 + ∥wR∥2 + ∥wF ∥2) +

C

N

N∑
n=1

∑
i,j

ξnij (7)

s.t. ∀(n, i, j), Uni ≻ Unj

wT
QX

Q
n × wT

F (X
F
ni −XF

nj)

+ (1− wT
QX

Q
n )× wT

R(X
R
ni −XR

nj) > 1− ξnij

0 ≤ wT
QX

Q
n ≤ 1

ξnij ≥ 0.

Thanks to the associative property of linear functions,
the optimization problem defined in Eq (7) can be divided
into two sub-problems: relevance/freshness model estima-
tion and query model estimation, and each of them is a con-
vex program (note that Eq (7) itself is non-convex). There-
fore, we can utilize the coordinate descent algorithm to iter-
atively solve the two convex programs, as shown in Figure 4.

The interaction between the relevance/freshness models
and query model is clearly stated in the optimization pro-
cess: in relevance/freshness models estimation, the query-
specific preference weight acts as a tuning factor, which
increases or decreases the features in these two models to
represent the searching intention; once we have the rele-
vance/freshness models, we tune the query model to pre-
serve more click preferences based on the current rele-
vance/freshness prediction.

Since each update step is convex, our coordinate optimiza-
tion is guaranteed to decrease the object function in Eq (7)
monotonically and therefore converges to a local optimum.

3.2 Temporal Features
We use 95 basic text matching features, such as query

term matched in title, matched position in document, and
source authority score from a subset of features employed in
Yahoo! news search engine, as our URL relevance features.
To capture the temporal property of the news documents
and queries, we propose a set of novel time-sensitive features
as our URL freshness features and query features, which are
summarized in Table 2.

3.2.1 URL Freshness Features
Publication age agepubdate(URL|Query): the URL’s pub-

lication timestamp is used to identify the document’s fresh-
ness.

However, for news search, the freshness of news content
is more important. Therefore, we propose to identify the
given news document’s freshness quality by content analysis
techniques.

Story age agestory(URL|Query): we use the regular ex-
pressions defined in [8] to extract the mentioned dates in
the news content, calculate their distances to the given query



Table 2: Temporal Features for URL freshness and Query model

Type Feature

URL freshness

agepubdate(URL|Query) = timestamp(Query)− pubdate(URL)
agestory(URL|Query) = timestamp(Query)− pubdateextracted(URL)
LM@1(URL|Query, t) = max

d∈Corpus(q|t)[t,t−1day]
log p(URL|d)

LM@5(URL|Query, t) = max
d∈Corpus(q|t)[t−2days,t−5days]

log p(URL|d)

LM@ALL(URL|Query, t) = max
d∈Corpus(q|t)[t−6days,−∞]

log p(URL|d)

t-dist(URL|Query) =
agepubdate(URL|Query)−mean[agepubdate(URL|Query)]

dev[agepubdate(URL|Query)]

Query Model

q prob(Query|t) = log
Count(Query|t)+δq∑
q Count(Query|t)+δ

u prob(User|t) = log Count(User|t)+λu∑
q Count(User|t)+λ

q ratio(Query|t) = q prob(Query|t)− q prob(Query|t-1)
u ratio(User|t) = u prob(User|t)− u prob(User|t-1)
Ent(Query|t) = −p(Query|t) log p(Query|t)
CTR(Query|t) = mean

[
CTR(URL|Query, t)

]
pub mean(Query|d) = meanURL∈Corpus(Q|t)

[
agepubdate(URL|Query)

]
pub dev(Query|d) = devURL∈Corpus(Q|t)

[
agepubdate(URL|Query)

]
pub frq(Query|t) = log Count(URL|d)+σu∑

URL Count(URL|t)+σ

(δq, δ), (λu, λ) and (σu, σ) are the smoothing parameters estimated from the query log.

Algorithm: Coordinate Descent for JRFL

Input : A collection of click preferences L ={[
XQ

n ,
(
(XR

ni, X
F
ni) ≻ (XR

nj , X
F
nj)

)
, . . . ,

(
(XR

nk, X
F
nk) ≻

(XR
nl,X

F
nl)

)]}
;

Input : Trade-off parameter C;
Input : Maximum iteration step S;
Input : Relative convergency bound ϵ;
Output : Learned model parameters of (wR, wF , wQ);
Step 0 : Randomly initialize (wR, wF , wQ) and set i = 0;
Step 1 : Update Relevance/Freshness models:

(w
(i+1)
R , w

(i+1)
F )← argmin

wR,wF ,ξ

1

2
(∥wR∥2+∥wF ∥2)+

C

N

N∑
n=1

∑
i,j

ξnij

with respect to the constrains listed in Eq (7) by fixing

the Query model to w
(i)
Q ;

Step 2 : Update Query model:

w
(i+1)
Q ← argmin

wQ,ξ

1

2
∥wQ∥2 +

C

N

N∑
n=1

∑
i,j

ξnij

with respect to the constrains listed in Eq (7) by fixing

the Relevance/Freshness models to (w
(i+1)
R , w

(i+1)
F );

Step 3 : Compute object function value defined in
Eq (7)→ obj and increase i = i+ 1;
Step 4 : If the relative change in obj is greater than
ϵ and i is smaller than S, go to Step 1, else return

(w
(i)
R , w

(i)
F , w

(i)
Q ) .

Figure 4: Coordinate Descent for JRFL.

within the document, and select the one with the minimal
distance as the extracted story timestamp to infer the cor-
responding story age.

Story coverage LM@{1,5,ALL}(URL|Query, t): content
coverage is an important character of the freshness of a news
document. Newer stories should cover more content that has
not been mentioned by the previous reports. For a given
query with a list of candidate news articles at a particular
time, we first collect all the previous news articles associated
with this query in our query log, and build language mod-
els [16, 24] for each of these documents. Then, we separate
those language models into three sets: models with docu-
ments published one day before, two to five days before,
and all the rest, and treat the candidate URLs as query to
calculate the maximum generation probability given by all
those models in these three sets accordingly.

Relative age t-dist(URL|Query): from a user’s perspec-
tive, since most of news search engines have already dis-
played agepubdate(URL|Query) to her, the document’s rel-
ative freshness within the returned list is more meaning-
ful for her. To capture this signal, we shift each URL’s
agepubdate(URL|Query) value within the returned URL list
by the mean value of publication age in this list and scale
the results by the corresponding standard deviation.

3.2.2 Query Freshness Features
The query features are designed to capture the latent pref-

erence between relevance and freshness.
Query/User frequency q prob(Query|t) and

u prob(User|t): the frequency of a query within a
fixed time slot is a good indicator of whether this is a
breaking news query. We calculate the frequency of the
query and unique users who issued this query within in a
time slot prior to the query time.

Frequency ratio q ratio(Query|t) and u ratio(User|t):
the relative frequency ratio of a query within two consecu-



tive time slots implies the change of users interest. A higher
ratio indicates an increasing user interest on this news event.
Distribution entropy Ent(Query|t): the distribution of

query’s issuing time is a sign of breaking news: a burst of
search occurs when particular news event happens. So we
utilize the entropy of query issuing time distribution to cap-
ture such burstiness. A multinomial distribution p(Query|t)
with fixed bin size (e.g., 2 hours per bin) is employed to ap-
proximate the query’s temporal distribution within the day.
Average CTR CTR(Query|t): CTR is another signal rep-

resenting the freshness preference of the query: when break-
ing news happens, people tend to click more returned URLs.
We calculate the average CTR over all the associated URLs
within a fixed time slot in prior to the query time.
URL recency pub mean(Query|d), pub dev(Query|d)

and pub frq(Query|d): the recency of the URLs associ-
ated with the query can be treated as a good profile of this
query’s freshness tendency: when the URLs associated with
one particular query in a fixed period are mostly fresh, it in-
dicates the query itself is highly likely to be a breaking news
query. We calculate the mean and standard deviation of the
associated URLs’ agepubdate(URL|Query) features and the
frequency of the URLs created in that specific period.

4. EXPERIMENT RESULTS
This section validates our JRFL model empirically with

large-scale click data sets and editorial annotations. We be-
gin by describing the data sets used.

4.1 Data Sets

4.1.1 Click Data Sets
We collected real search sessions from Yahoo! news search

engine in a two months period, from late May to late July,
2011. And to unbiasedly compare different ranking algo-
rithms, we also set up a random bucket to collect exploration
clicks from a small portion of traffic at the same time. In
this random bucket, the top four URLs were randomly shuf-
fled and displayed to the real users. By doing such random
shuffling, we were able to collect user click feedback on each
document without positional bias, and such feedback can
be thought as a reliable proxy on relevance of documents
[18]. As a result, we only collected the top 4 URLs from this
random bucket.
In addition, we also asked editors to annotate the rele-

vance and freshness in Aug. 9, 2011’s query log immediately
one day after, according to the editorial guidance given by
Dong et al. [8].
Simple preprocessing is applied on these click data sets:

1) filtering out the sessions without clicks, since they were
useless for either training or testing in our experiments; 2)
discarding the URLs whose publication time was after the
query’s issuing time (caused by errors from news sources);
3) discarding sessions with less than 2 URLs.

4.1.2 Preference Pair Selection
We decide to train our model on the normal click data, be-

cause such clicks are easier to collect without hurting the sys-
tem’s performance. However, this kind of clicks are known
to be heavily positional biased [2]. To reduce the bias for
training, we followed Joachims et al.’s method to extract
preferences from clicks [14]. In particular, we employed two
click heuristics:

1. “Click ≻ Skip Above”: For a ranked URL list{
U1, U2, . . . , Um

}
and a set C containing the clicked

URLs, extract a preference pair Ui ≻ Uj for all pairs
1 ≤ j < i with Ui ∈ C and Uj /∈ C.

2. “Click ≻ Skip Next”: For a ranked URL list{
U1, U2, . . . , Um

}
, and a set C containing the clicked

URLs, extract a preference pair Ui ≻ Ui+1 for all
Ui ∈ C and Ui+1 /∈ C.

In addition, to filter out noisy and conflicting preferences,
we defined three rules: 1) filter out the preference pairs ap-
pearing less than 5 times; 2) calculate Pearson’s χ2 value [6]
on all the pairs, and order them according to their χ2 value;
3) if both Ui ≻ Uj and Uj ≻ Ui are extracted, discard the
one with smaller χ2 value.

After these selection steps, we were able to keep the top
150K preference pairs from some portion of normal clicks
we collected in Section 4.1.1. Besides, for the testing pur-
pose, we randomly select 500k query-URL pairs from origi-
nal normal click set (not including the URLs used for gener-
ating the click preference pairs) and 500k from the random
bucket clicks. In order to guarantee the quality of freshness
annotation, we asked the editors to finish the annotation in
day. As a result, we only have about 13k query-URL pairs
annotated out of that day’s query log. As a summary, we
list the data sets for our experiments in Table 3.

Table 3: Evaluation Corpus

#(Q,t) #(Q,U,t) #URL Pairs

Training preferences 75,236 230,351 150,000
Normal clicks 59,062 500,000 -
Random clicks 127,474 500,000 -

Editorial judgment 1,404 13,091 -

4.1.3 Temporal Feature Implementation
For most of our temporal features, we had to specify a time

slot for the implementation; for example, the Query/User
frequency q prob(Query|t) and u prob(User|t) are both
calculated within a predefined time slot. In the following
experiments, we set such a time slot to be 24 hours, and all
the necessary statistics were collected from this time window
accordingly. Once the features were generated, we linearly
scaled each of them into the range [-1, 1] to normalize them.

4.1.4 Baselines and Evaluation Metrics
Since the proposed JRFL works in a pairwise-learning-to-

rank manner, we employed two classic pairwise-learning-to-
rank algorithms, RankSVM [13] and GBRank [25], as our
baseline methods. Because these two algorithms do not ex-
plicitly model relevance and freshness aspects in ranking,
we fed them with the concatenation of all our URL rele-
vance/freshness and query features. Besides, to compare the
models trained on clicks with those trained on editorial judg-
ments, we also introduced Dong et al.’s freshness-demotion-
trained GBRank model [8] as our baseline and denoted it as
“FreshDem”.

To quantitatively compare different ranking algorithms’
retrieval performance, we employed a set of standard eval-
uation metrics in information retrieval. In click data, we
treat all the clicked URLs as relevant and calculate the corre-
sponding Precision at 1 (P@1), Precision at 2 (P@2), Mean
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Figure 5: Scatter plot of CTR versus JRFL’s prediction

Average Precision at 3 (MAP@3), Mean Average Precision
at 4 (MAP@4), and Mean Reciprocal Rank (MRR). Defini-
tions of these metrics can be found in standard texts (e.g.,
[3]). In the editorial annotation data set, we treated the
grade“Good”and above as relevant for precision-based met-
rics, and also used discounted cumulative gain (DCG) [12]
as an evaluation metric. 4

4.2 Analysis of JRFL

4.2.1 Convergency
We first demonstrate the convergency of the coordinate

descent algorithm for JRFL model as described in Figure 4,
which is the necessary condition for applying the proposed
model in real ranking problems. We randomly divided the
training preference pairs into two sets, one with 90k pairs for
training and the rest 60k for testing. We fixed the trade-off
parameter C in JRFL to be 5.0 (we also tried other settings
for this parameter, smaller C would render us less iterations
to converge, but the tendency of convergency is the same),
relative convergency bound ϵ to be 10−5 and maximum it-
eration step S to be 50 in the coordinate descent algorithm.
To study if the algorithm’s convergence is sensitive to the
initial state, we tried 3 starting points: 1) fixing the initial

query weights αQ(0) to be 1.0 (freshness only); 2) fixing αQ(0)

to be 0.0 (relevance only); 3) setting it uniformly between
0 and 1, by directly set all the query weights accordingly
at step 0. We visualize the training process by illustrat-
ing the updating trace of object function defined in Eq(7),
pairwise error rate on both training and testing set, and
the mean/standard deviation of the updated query weights
during the iterative optimization in Figure 5.
As demonstrated in Figure 5 that the proposed JRFL

model converges during the coordinate descent optimization
process, and such convergency does not depend on the initial
state. From Figure 5(c), we can observe that the optimal
query weight setting for this training set is usually around
0.4546± 0.0914. Hence, the random initialization converges
fastest comparing with two other settings, since the initial
state given by random is closest to this optimal setting.
In addition, it should be emphasized that, although the

average of the converged value of αQ is less than 0.5, it
does not necessarily indicate freshness is less important than

4According to Yahoo!’s business rule, the reported metrics
are normalized accordingly; therefore only the relative im-
provement makes sense.

relevance in general for news search task, because the scales
of the outputs of our freshness and relevance models may
not be comparable. Therefore, only the order among the
queries given by such learned query weights tell us their
relative emphasis on relevance and freshness aspects.

Another phenomenon we observed in Figure 5(a) and (b)
is that even though the object function decreased quickly af-
ter the first several iterations, the pairwise error rate needed
more iterations to reach its optimal value. Furthermore,
during these updates, there were some inconsistent updates
between the object function value and pairwise error rate:
while the object function value always decreased with more
iterations, the pairwise error rate did not show the same
monotonic behavior. This inconsistence is expected, be-
cause our object function in Eq (7) is a relaxed one: we
do not directly minimize the pairwise error rate, which is
computationally intractable, but we are trying to reduce the
prediction gap between the mis-ordered pairs.

Table 4: Feature weights learned by JRFL

Feature Type Top 3 features

URL freshness Neg agepubdate(URL|Query)
LM@5(URL|Query, t)
t-dist(URL|Query)

Pos q ratio(Query|t)
pub frq(Query|t)
q prob(Query|t)

Query model Neg Ent(Query|t)
pub dev(Query|d)
pub mean(Query|d)

Table 4 gives the top 3 positive and negative features from
the newly proposed URL freshness features and query fea-
tures, ordered by the learned weights. The weights in the
linear model reflect the features’ relative contribution to the
final ranking decision. Because we only have 6 URL fresh-
ness features, and the learned weights for them are all neg-
ative, we only list the top 3 negative ones in this table.

The weights learned by the corresponding mod-
els are reasonable and consistent with our design:
for URL freshness features, the smaller values of
Publication age agepubdate(URL|Query), Story cov-
erage LM@5(URL|Query, t) and Relative age t-
dist(URL|Query) are, the more recent the news ar-



ticle is; and for the query features, the larger values
of query frequency q prob(Query|t) and URL recency
pub frq(Query|d), and the smaller values of Distribution
entropy Ent(Query|t), URL recency pub mean(Query|d)
and pub dev(Query|d) are, the more users and news
reports start to focus on this event, and therefore the
freshness quality becomes more important.

4.2.2 Relevance and Freshness Learning
Since our JRFL model does not rely on explicit rele-

vance/freshness annotations, it is important to evaluate how
well our relevance and freshness models can estimate each
aspect separately. We separately used the relevance and
freshness annotations on Aug. 9, 2011’s query log as the
test bed and utilized two GBRank models trained on Dong
et al,’s relevance and freshness annotation data set accord-
ingly (44,641 query-URL pairs) [8] as baseline methods. Be-
cause [8]’s data set does not contain the corresponding click
information, those two GBrank models were trained with-
out new query features. Our JRFL was trained on all the
extracted click preference pairs.

Table 5: Performance on individual relevance and
freshness estimation

P@1 MAP@3 DCG@5

Relevance GBRank 0.9655 0.3422 14.6026
JRFL Relevance 0.8273 0.2291 14.7962

Freshness GBRank 0.9823 0.4998 18.8597
JRFL Freshness 0.9365 0.3106 19.8228

We observe mixed results in Table 5: the relevance and
freshness modules inside JRFL have worse ranking perfor-
mance than the purely relevance/freshness trained GBRank
models at the top positions (lower P@1 and MAP@3), but
similar cumulative performance, i.e., DCG@5 for both as-
pects. The reason for this result is that JRFL model has
to account for the trade-off between relevance and freshness
imposed by the queries during training, the most relevant or
recent documents might not be treated as good training ex-
amples if their another aspects were not desirable. However,
the purely relevance/freshness trained GBRank models do
not have such constraints, and can derive the patterns to
put the most relevant/recent documents at the top posi-
tions separately. As a result, those two GBRank models’
performance can be interpreted as upper bounds for the in-
dividual ranking criteria (freshness/relevance) in this data
set. When we reach the lower positions, those two types
of ranking algorithms give the users quite similar utilities,
i.e., under DCG@5 metric. Besides, we want to empha-
size that such result is already very encouraging since the
JRFL model successfully infers the relevance and freshness
solely from the clicks, which confirms the soundness of our
assumption in this work that users’ click behavior is the joint
consequence of examining the relevance and freshness of a
news article for the given query; by properly modeling such
relationships, we can estimate the relevance and freshness
from the clickthroughs to certain extend.

4.2.3 Query Weight Analysis
There is no direct way for us to evaluate the correctness

of the inferred query weights, since such information is not

observable in the search log. Therefore, in this experiment,
we investigate it in an indirect way. As we have discussed in
the previous discussion, the order among the queries given
by such weight reflects the query’s relative emphasis over
freshness aspect. Therefore, we ranked the queries in our
training set according to the learned weights and list the
top 10 (freshness-driven) and bottom 10 (relevance-driven)
queries in Table 6.

Table 6: Query intention analysis by the inferred
query weight
Freshness Driven Relevance Driven
7-Jun-2011, china 5-Jul-2011, casey anthony trial

summary
6-Jul-2011, casey an-
thony trial

9-Jul-2011, nascar qualifying re-
sults

24-Jun-2011, nba
draft 2011

8-Jul-2011, burbank 100 years pa-
rade

28-Jun-2011, libya 10-Jul-2011 gas prices summer
2011

9-Jun-2011, iran 10-Jul-2011, bafta film awards
2011

6-Jun-2011, pakistan 2-Jul-2011, green lantern cast
13-Jun-2011, lebron
james

9-Jul-2011, 2011 usga open
leaderboard

29-Jun-2011, greece 3-Jul-2011, lake mead water level
july 2011

27-May-2011, joplin
missing

5-Jul-2011, caylee anthony au-
topsy report

6-Jun-2011, sarah
palin

4-Jul-2011, aurora colorado fire-
works 2011

at the first glance, it may be surprising to notice that most
of the top ranked freshness-driven queries are the names
of some countries and celebrities, e.g., “iran”, “libya” and
“lebron james”, . But that is also quite reasonable: for those
kind of queries, they are actually ambiguous, since there
would be many candidate news reports related to different
aspects of these queries. But when users issue such type
of “ambiguous” queries in news search, they should be most
interested in the recent updates about these countries and
celebrities. We went back to check the most clicked URLs of
these queries, and the clicks confirmed our assumption: the
most clicked URLs for query “libya” were about the recent
progress of libya war; and news articles covering the latest
diplomatic affairs between U.S. and Iran got most clicks for
the query “iran”.

Table 7: Query length distribution under different
query categories

Freshness Driven Relevance Driven ALL

1.446 ± 0.804 3.396 ± 1.309 2.563 ± 1.203

Another interesting finding from the learned query weights
is that the length of relevance-driven queries is much longer
than the freshness-driven queries. To validate this obser-
vation, we selected the top 500 relevance-driven and top
500 freshness-driven queries to calculate the corresponding
query length distributions comparing to the length distri-
bution of all the queries, and showed the results in Table



7. This result is consistent with our intuition: when users
are seeking specific information, they tend to put more con-
straints (i.e., longer queries) to describe their information
need; in contrast, when users are making recency search,
they usually do not have a pre-determined mind about
the events, so they often issue broad queries (i.e., shorter
queries) about entities of their interest to see what is hap-
pening recently to those entities. Apparently, our query
weight model is consistent with this intuition, and is able
to distinguish these two typical searching scenarios. And
this also reminds us query length is a good query feature to
indicate the preference over freshness aspect.

4.3 Ranking Performance
To validate the effectiveness of the proposed JRFL model

in real news search tasks, we quantitatively compare it with
all our baseline methods on: random bucket clicks, normal
clicks, and editorial judgments. All the click-based learning
algorithms are trained on all 150K click preferences. Since
all these models have several parameters to be tuned (e.g.,
the trade-off parameter C in both RankSVM and JRFL), we
report their best performance on the corresponding testing
set according to MAP@4 metric in the following results and
perform t-test to validate the significance of improvement
(against the runner-up performance accordingly).
First, we perform the comparison on the random bucket

clicks, because such clicks are more trustable than normal
clicks due to the removal of positional biases.

Table 8: Comparison On Random Bucket Clicks

Model FreshDem RankSVM GBrank JRFL

P@1 0.3413 0.3706 0.3882 0.3969*
P@2 0.3140 0.3372 0.3477 0.3614*

MAP@3 0.5301 0.5601 0.5751 0.6012*
MAP@4 0.5859 0.6090 0.6218 0.6584*

MRR 0.5899 0.6135 0.6261 0.6335*

* indicates p-value<0.05.

From the results in Table 8, we can find the proposed
JRFL model achieves encouraging improvement over the sec-
ond best GBRank model, especially on MAP@4 the relative
improvement is over 5.88%. This improvement confirms that
properly integrating relevance and freshness can indeed im-
prove the user’s search satisfaction.

Table 9: Comparison On Normal Clicks

Model FreshDem RankSVM GBrank JRFL

P@1 0.3886 0.5981 0.5896 0.6164*
P@2 0.2924 0.4166 0.4002 0.4404*

MAP@3 0.4991 0.7208 0.6849 0.7502*
MAP@4 0.5245 0.7383 0.7024 0.7631*

MRR 0.5781 0.7553 0.7355 0.7702*

* indicates p-value<0.05

Now we perform the same comparison on the normal
click set, and we can observe similar improvement over
other ranking methods, as shown in Table 9. Besides, from
the results on both of these two click data sets, we can
clearly observe that the click-preference-trained models gen-
erally outperform the freshness-demotion-trained GBRank

model: JRFL’s improvement on P@1 against the freshness-
demotion-trained GBRank model is 16.2% and 58.6% on the
random bucket click set and normal click set respectively.
We have already analyzed the reason for this degenerated
results in Figure 1 that a static grade demotion strategy can
hardly guide the learning algorithm to achieve the optimal
ranking results.

On the editorial annotation data set, to compare different
model’s performance, we mapped the separately annotated
relevance and freshness labels into one single label by certain
predefined strategy. In this experiment, we used the same
freshness demotion strategy in Dong et al.’s work [8].

Table 10: Comparison On Editorial Annotations

Model FreshDem RankSVM GBrank JRFL

P@1 0.9184 0.9626 0.9870 0.9508
P@2 0.9043 0.9649 0.9729 0.9117

MAP@3 0.3055 0.3628 0.3731 0.4137
MAP@4 0.4049 0.4701 0.4796 0.4742

MRR 0.9433 0.9783 0.9920 0.9745
DCG@1 6.8975 7.9245 8.1712* 7.2203
DCG@5 15.7175 17.2279 17.7468 18.9397*

* indicates p-value<0.05.

From this result, we find that the freshness-demotion-
trained GBRank model did not achieve the best performance
on such “grade demoted” testing set either. This might be
caused by the time gap between different annotations: [8]’s
annotations were generated more than one year ago (Febru-
ary to May, 2009). The out-of-date annotation might not
contain consistent relations between queries and document
as in the new annotations. Besides, we also notice that the
margin of improvement from JRFL becomes smaller com-
paring to the click-based evaluations. In the following, we
perform some case studies to find out the reasons for the
diminished improvement.

In Table 11, we illustrate one case of inferior ranking re-
sult for the query “afghanistan” from JRFL. We list the top
4 ranked results from JRFL together with the editorial rel-
evance and freshness grades. (We have to truncate some of
the URLs because they are too long to be displayed.)

Table 11: Case Study: Degenerated ranking results
by JRFL for query “afghanistan”

URL Relevance Freshness

http://www.cbsnews.com/video/
watch/?id=7376057nXXX

Good Excellent

http://news.yahoo.com/afghanistan-
helicopter-crash-why-army-used-
chinook-half-180000528.html

Excellent Excellent

http://news.yahoo.com/whatever-
happened-civilian-surge-
afghanistan-035607164.html

Excellent Excellent

http://www.msnbc.msn.com/id/
44055633/ns/world news-
south and central asia/XXX

Perfect Excellent

The freshness weight inferred by JRFL for this query is
0.7694, which is biased to freshness aspect. However, all
those URLs’ freshness grades are “Excellent”, so that in the
demoted final grades, the “ground-truth” ranking only de-



pends on the relevance aspect. The predicted relevance score
difference gets diminished by this biased freshness weight
in JRFL: the JRFL predicted relevance score difference be-
tween the best document in “ground-truth” (last row in the
table) versus JRFL ordering (first row in the table) is 0.44
while the corresponding freshness score difference is -0.31.
As a result, JRFL gives a relatively “bad” ranking for this
query.
In addition, we want to revisit the relationship between

the predicted orders given by JRFL and CTR as we have
done in Figure 2. This time, we draw the scatter plot be-
tween the JRFL predicted ranking scores and CTRs on the
same set of URLs as in Figure 2.
The monotonic relationship between the predicted rank-

ing and CTRs is much more evident than the one given by
the demoted grades: URLs with lower CTRs concentrate
more densely in the area with lower prediction scores, and
the average Pearson correlation between the predicted rank-
ing score and CTR across all the queries is 0.7163 with stan-
dard deviation 0.1673, comparing to the average of 0.5764
and standard deviation of 0.6401 in the the demoted grades.
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Figure 6: Scatter plot of CTR versus JRFL’s pre-
diction.

5. CONCLUSIONS
In this work, we proposed a joint learning framework,

Joint Relevance Freshness Learning, for modeling the topical
relevance and freshness, and the query-specific relative pref-
erence between these two aspects based on the clickthroughs
for the news search task. Experiments on large-scale query
logs and editorial annotations validate the effectiveness of
the proposed learning method.
In this paper, we only instantiate the proposed joint learn-

ing framework by linear models, but many alternatives exist.
It would be meaningful to employ other types of non-linear
functions, for example, using Logistic functions can natu-
rally avoid the range constrains over query weights in opti-
mization.
Besides, in our current setting, the preference between rel-

evance and freshness is assumed to be only query-dependent.
It would be interesting to extend this to user-dependent, i.e.,
personalized search. By defining a proper set of user-related
features, or profiles, the proposed JRFL can be easily ap-
plied in such user-centric retrieval environment. What is
more, the proposed model can also be flexibly extended to
other retrieval scenarios, where usefulness judgment is be-

yond pure topical relevance, such as opinions in blog search
and distance in location search.
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