
Amalia

Abstract MAchine for

LInguistic Applications

User's Guide

Version 1.0

February 1998

Shuly Wintner, Evgeniy Gabrilovich, Nissim Francez

Laboratory for Computational Linguistics

Computer Science Deparmtent

Technion, Israel Institute of Technology

32000 Haifa, Israel

lcl@cs.technion.ac.il

Contents

1 Introduction 1

2 Functionality and Features 2

2.1 Type Speci�cation . 2
2.2 Grammars . 2
2.3 Program Organization . 4

3 User's Guide 6

3.1 Installation . 6
3.2 Using the Graphical User Interface 7
3.3 Compiling Grammars . 8
3.4 Running Compiled Grammars . 8
3.5 Using Amalia for Generation . 9

3.5.1 Overview . 9
3.5.2 Semantic primitives . 11
3.5.3 Minimum required type hierarchy 11

i

Preface { Version 0.1

The system described herein was implemented as part of the PhD dissertation of
the �rst author and the Masters thesis of the second author, under the supervision
of the third author, at the Department of Computer Science of the Technion, Haifa.
It was never meant to become a `commercial' product, and it should be considered
as a prototype whose main purpose is to validate the theoretical results of the
dissertations. Still, we believe that it can prove useful for certain practical purposes,
and that is why we make it publicly available.

We will appreciate any comments regarding the system. Please send any bug
reports as soon as the bugs are encountered. We'd also appreciate any feedback
on the usability and functionality of the system, as well as requests for additions,
modi�cations and extensions. However, there can be no guarantee that any such
requests are ful�lled, nor even that bugs are �xed. The system comes with absolutely
no warranty.

We wish to acknowledge the help and support of Bob Carpenter throughout the
entire span of the system's development period. We are also grateful to the sta� at
the Seminar f�ur Sprachwissenschaft, Universit�at T�ubingen.

The system is available without charge from the authors. It is designed to
run under the Unix operating system and was tested on Sun and Silicon Graphics
workstations. Adaptations to other platforms will be considered if the need arise.

Shuly Wintner
Haifa, 1997

Preface { Version 0.2

The only major change introduced in this version is the use of a newer version
of Tcl/Tk. With Tcl 7.6 and Tk 4.2 it is possible to pre-compile the GUI code,
hopefully resulting in better performance of the graphical version of Amalia. With
the Plus Patch to Tcl/Tk, Amalia is now independent of the presence of a Tcl/Tk
installation { the system should run even in sites that don't have Tcl/Tk.

Shuly Wintner
T�ubingen, June 1997

Preface { Version 1.0

This version contains some bug �xes. More importantly, the User's Guide now
contains an extended description of generation with Amalia.

Shuly Wintner
T�ubingen, February 1998

ii

Chapter 1

Introduction

Amalia is an e�cient, abstract-machine based implementation for a subset of the
grammatical formalism ale, described in (Carpenter, 1992a). It provides a uni�ed
environment for processing ale-based grammars: grammars can be compiled, and
then used for both parsing and generation of natural language phrases. The system
also contains a simple debugger for easing the process of grammar development. Two
versions of the Amalia exist: an interactive, easy-to-use, system with a graphical
user interface and a text-oriented, non-interactive one. The former is intended for
developing prototype grammars; the latter is far more e�cient but less user friendly,
and is intended to be used for batch processing.

This user's guide describes Amalia from a practical point a view. It provides
information necessary for installing the system and using it. However, it does not
describe the theory underlying the system. This can be found in (Wintner, 1997),
and in less details { in (Wintner and Francez, 1995a; Wintner and Francez, 1995b).
(Wintner, Gabrilovich, and Francez, 1997) describes Amalia as a uni�ed platform
for parsing and generation, elaborating more on the way the two directions are
integrated into a single system. We also assume acquaintance with ale { refer to
either (Carpenter, 1992a) or (Carpenter, 1992b) for more details. We do, however,
list the di�erences between ale and Amalia in particular, those features of ale
that are not supported by Amalia.

Chapter 2 describes the features provided by the system, emphasizing the dif-
ferences from ale. Chapter 3 guides users in operating the system. The appendices
will (some time in the future) list the error and warning messages issues by the
system, and formalize the syntax of input speci�cations.

1

Chapter 2

Functionality and Features

This chapter lists the main features of Amalia. In particular, it details the di�er-
ences between Amalia and ale in terms of the supported features.

2.1 Type Speci�cation

Amalia supports the same type hierarchies as ale does, with exactly the same
speci�cation syntax. This means that the user can specify any bounded-complete
partial order as the type hierarchy. Only immediate sub-types are speci�ed, and
the re
exive-transitive closure of the sub-type relation is computed automatically
by the compiler. The special type bot must be declared as the unique most general
type. In contrast to ale, Amalia does not issue a warning message when a type
only has one subtype.

Appropriateness, too, is speci�ed using ale's syntax, by describing the features
at the type they are introduced by. The feature introduction condition must be
obeyed: every feature must be introduced by some most general type, and it is
appropriate for all its sub-types. However, there are two di�erences between Amalia
and ale in this respect. First, Amalia allows appropriateness loops1 in the type
hierarchy; on the other hand, some ale speci�cations are not handled correctly by
Amalia. If a feature f is introduced by the type t and was assigned a type t' as its
appropriate value, then sub-types of t cannot `rede�ne' the appropriate values of f.
This limitation will be removed in subsequent versions of Amalia.Type constraints
are not supported by Amalia.

2.2 Grammars

Amalia uses a subset of ale's syntax for describing feature structures. As a rule,
whenever Amalia supports ale's functionality, it uses the same syntax. In general,
Amalia supports totally well-typed, possibly cyclic, non-disjunctive feature struc-
tures. Set values, as in ale, are not supported, but list values are. Amalia does
not respect the distinction between intensional and extensional types (see (Car-
penter, 1992b, Chapter 8)). Also, feature structures cannot incorporate inequality
constraints.

1Appropriateness loops are handled by employing lazy evaluation techniques at run time.

2

The semantics of the logical descriptions, as well as the operator precedence,
follow ale. As in ale, partial descriptions are expanded at compilation time.
Amalia's compiler performs type inference on partial descriptions, reports any in-
consistencies, and then creates code for the expanded structures. To avoid in�nite
processing in the face of appropriateness loops (where no �nite totally well-typed
structure that satis�es the description might exist), the compiler stops expanding a
structure if it is the most general structure of its type.

Amalia supports macros in a similar way to ale. The syntax is the same, and
macros can have parameters or call other macros (though not recursively, of course).
ale's special macros for lists are supported by Amalia. There are two di�erences
between Amalia and ale with respect to macros: �rst, Amalia expands macros
at compile time, thus reporting inconsistencies earlier than ale. Second, variables
in the scope of a macro are treated exactly the same as feature structure variables.

In ale, variables in the scope of a macro are not the same as ale feature structure
variables | they denote where macro-substitutions of parameters are made, not
instances of reentrancy in a feature structure. If we employ the following macro:

blah(X) macro

b,

f: X,

g: X.

with the argument (c,h:a) for example we obtain the following feature structure
in ale:

b

F c

H a

G c

H a

where the values of F and G are not shared (unless c and a are extensional). In
Amalia, the same speci�cation would yield:

b

F [0] c

H a

G [0]

ale includes a built-in de�nite logic programming language; Amalia does not.
The entire power of de�nite clause speci�cations is missing in Amalia. However,
a few common functions that are external to the feature structure formalism were
added to the system, and grammar speci�cations can use them. These features are
referred to as goals, although it must be remembered that they are far weaker than
ale's goals.

In the current version of the system, only two goals are supported: append, which
performs list concatenation, and union, which performs set union.2 The syntax of
using both goals is:

2We assume an encoding of sets as lists { there is no internal representation for sets in Amalia.

3

goal> append(X,Y,Z).

goal> union(X,Y,Z).

where X,Y and Z are variables. X and Y must be bound when the goal is evaluated,
and their values must be of appropriate types (Y must be a list for append, X and Y

must be sets for union). Z is set by the execution of the goals, and its former value
is lost. Note that goals are not guaranteed to work properly when Amalia is used
for generation (Section 3.5).

Amalia employs a bottom-up chart based control unit, where rules are evalu-
ated from left to right. The chart is used for storing active and inactive edges. For
parsing, edges span a sub-sequence of the input string, assigning it some structure.
For generation, edges span a sub-form of the input semantic form, also assigning it
a structure that eventually determines a phrase whose meaning is that sub-form.
It must be noted that at run time there is no notion of the particular task (pars-
ing/generation) performed by the machine. Computations terminate after �nding
all of the complete edges derivable from the input and the grammar rules. There
is no notion of an initial symbol . Of course, if the grammar is such that an in�nite
number of derivations can be produced, computations might not terminate. Amalia
does not incorporate a subsumption check to test for spurious ambiguity.

Rules can incorporate de�nite clause goals only after category speci�cations.
While goals can occur anywhere in the body of a rule, they are evaluated after the
entire rule's body was scanned. Therefore, goals can refer to variables that are only
instantiated after the entire body of the rule was seen, and can instantiate variables
that occur in the rule's head.

Amalia preserves ale's syntax in describing lexical entries. Multiple lexical
entries may be provided for each word, separated by semicolons. The current version
of the system does not represent large lexicons e�ciently; this will be changed in
future versions. Amalia also keeps ale's syntax in the de�nition of empty categories
(or �-rules). In contrast to ale, Amalia processes empty categories at compile time.
Each empty category is matched by the compiler against each element in the body
of every rule; if the uni�cation succeeds, a new rule is added to the grammar, based
upon the original rule, with the matched element removed. Some limitations apply
for this process (which in the general case is not guaranteed to terminate), and
therefore the resulting grammar might not be equivalent to the original one.

Lexical rules are not supported in this version of Amalia. Amalia's syntax for
phrase structure rules is similar to ale's, with the exception of the cats> speci�ca-
tion that is not supported.

2.3 Program Organization

Amalia's programs are composed of four parts: a type speci�cation, macro de�ni-
tions, grammar rules and a lexicon. If a grammar is to be used for generation as well,
it might contain an optional �fth part - a Connective Registry (see Section 3.5.2).
In contrast to ale, Amalia's syntax requires that the type hierarchy precede both
the lexicon and the rules. The macros must be de�ned before they are used, and the
grammar rules must precede the lexicon. Furthermore, each part of the program
must be introduced by a designated keyword. The syntax of Amalia's programs is
the following:

4

<prog> ::= %th <th> <macros> <grammar> <lexicon> <conn_registry>

<th> ::= <type_spec>

| <th> <type_spec>

<macros> ::= /* epsilon */

| %macros macro_defs

<macro_defs> ::= /* epsilon */

| macro_defs macro_def

<grammar> ::= /* epsilon */

| %grammar rules

<rules> ::= rule

| rules rule

<lexicon> ::= /* epsilon */

| %lexicon lex_entries

<lex_entries> ::= /* epsilon */

| lex_entries lex_entry

<conn_registry> ::= /* epsilon */

| %connective_registry cr_entries

<cr_entries> ::= /* epsilon */

| cr_entries cr_entry

5

Chapter 3

User's Guide

3.1 Installation

The exact details of the abstract machine are outside the scope of this paper; the
reader is referred to (Wintner and Francez, 1995a; Wintner, 1997) for more in-
formation on the machine itself, and to (Gabrilovich, 1997) for using Amalia for
generation and for a detailed description of grammar inversion. In this Section we
list some implementation details along with some functional features of the system.

Amalia is implemented in C, augmented by yacc and lex; the graphical user
interface is designed in Tcl/Tk (Ousterhout, 1994). It was developed on a Silicon
Graphics Indy workstation but was tested also on an IBM PC running Windows'95
and Linux. Currently, the system is available only for some Unix machines, but
other platforms might be supported in the future.

The system comes in two varieties: a uni�ed, graphical, user-friendly one and
a more e�cient yet far less friendly batch one. The �rst version, which includes a
graphical user-interface, is referred to below as `amalia'. The other version contains
two executable �les, referred to as the compiler and the interpreter.

To use the graphical version of Amalia, you'll need either a Sun or an SGI
Indy with a graphical display. The necessary �les are amalia, which is the main
executable �le, and gui and FSbox.tcl, which must reside under the directory
source (the tar �le in which the system is supplied automatically places the �les
in their appropriate locations). To use the non-grahical version you'll need the �les
comp and int, which are the compiler and the interpreter, respectively.

The entire system uses about 1.5MB of memory, of which about 1.2MB are
needed for the graphical version.

The system is obtainable from:

http://www.sfs.nphil.uni-tuebingen.de/~shuly/amalia.uu

(if you cannot access this �le, send e-mail to lcl@cs.technion.ac.il). Install the
�le amalia.uu there. Then execute the following commands:

> uudecode amalia.uu

> gunzip amalia.tar.gz

> tar -xf amalia.tar

6

A new directory, amalia, will be created, with three sub-directories: bin, with the
�les amalia, int and comp under it, doc, with a PostScript version of this document
in it, and examples with some example grammars. The system is ready for use.

3.2 Using the Graphical User Interface

Amalia's graphical user interface is invoked by the command

> amalia [file]

where file is the name of the grammar �le. Make sure the DISPLAY environment
variable points to your display before invoking the system.

Amalia comes up as a large window which is divided to four areas (listed here
from the top down): a control panel with pull-down menus; an entry line for the
input string; several windows for displaying the abstract machine's state; and a
window for displaying messages.

The control panel includes four pull-down menus: File, Compile, Parse and
Generate. The File menu allows one to select the grammar �le and to quit the
system. Compile provides for compiling the grammar, both for parsing and for
generation. Parse and Generate enable the user to execute a (previously compiled)
grammar. If Parse is used, the Input string window must contain the phrase to
be parsed. For Generate, the Input string window must specify the name of the
query �le, which contains (an ale description of) a feature structure representing
the input semantic form.

Both Parse and Generate provide several operation options. In particular, both
allow the user to execute the program in a step mode, by executing one instruction
at a time. In case the program `gets out of hand', its operation can be ceased by
selecting the break option from either of the two menus.

Most of the control options described above are bound to accelerators (`hotkeys')
so that they are operable from the keyboard, without using the mouse.

The central area of the interface is dedicated to the display of the machine's
internal state. A thorough explanation of the abstract machine is outside the scope
of this document, and the user is referred to (Wintner and Francez, 1995a; Wintner,
1997) for the details. In general, there are windows that display the values of all the
special purpose registers, the general-purpose registers, the heap and the code area.
The program counter (pointing to the next instruction to be executed) is represented
by the symbol => next to the instruction, in the code area. The chart cannot be
displayed in its entirety, but a special window allows the user to ask for the display
of either the current edge or all the edges in a certain chart entry. Complete edges
are shown as feature structures; active edges are currently not displayed.

A breakpoint can be speci�ed in a certain location of the code. Simply click
the mouse left button on some instruction, and the interpreter will stop before
executing it. To continue running, select Run again. Breakpoints in the code that
was generated for the type hierarchy or the lexicon are not respected.

An additional feature provides an option to view the contents of the heap as
a feature structure. By double-clicking on some heap cell, the system graphically
displays the feature structure accessible from this cell. If the program terminates,
the resultant feature structures (if any) are also displayed graphically.

7

The Message area is used by the system to report various messages, warnings
and errors to the user. When Amalia is used in the generation mode, the generated
phrases (if any) are also displayed in this area.

3.3 Compiling Grammars

The compiler is invoked by the command

> comp [-g] file

where file is the name of the grammar �le and the optional
ag -g instructs
the compiler to invert the grammar for generation (see Section 3.5 below) prior to
compilation. The main product of the compilation is a �le containing the compiled
grammar, represented as a program inAmalia's machine language; this �le is always
called program. In addition to the program, the compiler creates several other
�les which contain symbol tables that are necessary for the interpreter to operate
correctly. Currently, these �les are the following:

� type tbl: contains information on types;

� subtype tbl: contains information on subtypes;

� feat tbl: contains information on features;

� th: contains pointers to the type uni�cation functions;

� words: contains information extracted from the lexicon.

If the compiler is invoked with the -g
ag, the �le words is not created, but instead
two additional �les are created:

� ut tbl: contains pointers to the type uni�cation functions;

� skb: contains information extracted from the lexicon and the Connective Reg-
istry (see Section 3.5.2).

Grammar compilation is highly e�cient in Amalia and shouldn't take more
than a few seconds, even on relatively large grammars.

There are many errors that Amalia is able to detect at compile time. These
errors will be
agged during compilation. Most errors indicate the line number in
which they are found. Some errors may be serious enough to halt compilation before
it is �nished. In general, it is a good idea to �x all of the errors before trying to
run a program, as the error messages only report serious bugs in the code, such as
type mismatches, unspeci�ed types, ill-formed rules, etc. Less serious problems are

agged with warning messages. The error and warning messages are listed in an
appendix at the end of this report, along with an explanation.

3.4 Running Compiled Grammars

The interpreter is invoked by the command

> int [-g] file string

8

where file is the name of the compiled grammar �le and string is the string
to parse. The optional
ag -g instructs the interpreter to generate rather than
parse. In this case, string must be the name of the query �le, which contains (an
ale description of) a feature structure representing the input semantic form for
generation (see Section 3.5).

If the parsed string is a sentence of the language de�ned by the grammar, the
parsing result is a set of feature structures that derive the string. In the case of
generation, the program ends up with a set of feature structures which encode the
generated phrases. In either case, the interpreter displays each feature structure en-
coded in the ale speci�cation language, which is appropriate for further processing
but rather di�cult for a human to read. For example, the feature structure

b

F [0] c

H a

G [0]

might be displayed as:

[12]b(

f:[14]c(

h:[18]a),

g:[14])

3.5 Using Amalia for Generation

3.5.1 Overview

An input for the generation1 task is a logical form which represents a meaning, and
a grammar to govern the generation process. The output consists of one or more
phrases in the language of the grammar whose meaning is (up to logical equivalence)
the given logical form.

Logical forms speci�ed as meanings by input grammars are given in a so-called
predicate-argument structure. The predicate-argument structure is analogous to
the familiar representation of semantic logical forms with �rst-order terms. Thus,
meanings are built from basic units (feature structures), each having a predicate and
(optionally) a number of arguments (see also Section 3.5.2 below). The formalism
also allows �-abstractions over predicate-argument constructs, as well as systematic
encoding of second- and higher-order functions.

Grammars are usually designed in a form oriented towards the analysis of a
string and not towards generation from a (usually nested) semantic form. In other
words, rules re
ect the phrase structure and not the predicate-argument structure.
It is therefore useful to transform the grammar in order to enable systematic re
ec-
tion of any given logical form in the productions. For this purpose, we apply to the
input grammar an inversion procedure, based upon2 (Samuelsson, 1995), to render

1In this work we mean by \generation" what is sometimes known also as \syntactic generation".

Thus, no text planning, speaker intentions and the like are considered here.
2Samuelsson's inversion algorithm was originally developed for de�nite clause grammars. We

adapted it to the Typed Feature Structure formalism.

9

the rules with the nested predicate-argument structure, corresponding to that of
input logical forms. The resultant \inverted" grammar is thus more suitable for
performing the generation task. Once the grammar is inverted, the generation pro-
cess can be directed by the input semantic form; elements of the input are consumed
during generation just like words are consumed during parsing. Grammars must sat-
isfy certain requirements in order for them to be invertible (see (Gabrilovich, 1997,
Section 3.2)). However, the requirements are not overly restrictive and allow encod-
ing of a variety of natural language grammars. These requirements induce certain
constraints on the type hierarchy of the input grammars. A fragment of the type
hierarchy that every grammar must include in order to be invertible is presented in
Section 3.5.3 below.

Grammar inversion is performed immediately prior to compilation for genera-
tion; in Amalia these two functions are merged into one and are always performed
together. The given grammar is enhanced in a way that will ultimately enable to
reconstruct the words spanned by the semantic forms. To achieve this aim, each
rule constituent is extended by an additional special-purpose feature. The value
of this feature for the rule's head is set to the concatenation of its values in the
body constituents, to re
ect the original phrase structure of the rule. Because of
the nature of grammar inversion, it does not necessarily preserve goals associated
with grammar rules (if any).

Figure 3.1 delineates an overview of AM-based generation. After the grammar
is inverted, it is compiled into the abstract machine code. At run time, the given
logical form is decomposed into meaning components, which initialize the AM chart,
and then the generation program is invoked. If generation terminates, it yields a
(possibly empty) set of feature structures; a grammar-independent post-processing
routine analyzes these structures and retrieves the generated phrases per se.

smoke(john)

AMALIA
Logical
form

"John

"John" "smokes"<john,smoke>

smokes"

G G
-1

Inversion

Figure 3.1: An overview of generation with Abstract Machine.

During generation, the graphical user interface is used as follows. The Input
string �eld speci�es the name of the query �le, which contains (an ale description
of) a feature structure representing the input semantic form. The Messages window
displays the phrases generated (if any). The feature structures that encode these
phrases are also displayed graphically, in separate windows.

The above overview contains only a brief description of the generation process.
For more details on Natural Language Generation with Abstract Machine, refer to
(Gabrilovich, 1997) and (Wintner, Gabrilovich, and Francez, 1997).

10

3.5.2 Semantic primitives

Logical forms, which represent meanings of sentences derivable by a given grammar,
are encoded with a set of semantic primitives. Such a set is �xed for each grammar
and can be deduced from the grammar speci�cation. The primitives may be of
one of two kinds: most of them represent meanings of lexical constants (e.g., john,
smoke, today), while the rest serve as connectives3 which aid in building complex
meaning forms (e.g., mod, which modi�es its �rst argument with the second one,
as in mod(smoke(john), today)). Primitives of the latter kind are not directly
related to any lexicon entry; the role of connectives is to connect other meaning
components together.

We therefore require that apart from the lexicon, a Connective Registry (CR) be
supplied4 with the grammar which encompasses the possible uses of the connectives
(for instance, some may be applicable to constants, others to predicates etc.). A CR
item is actually a connective usage signature; each CR entry is a feature structure
giving the full representation of the primitive being de�ned.

For more details on encoding semantics in generation grammars,
refer to (Gabrilovich, 1997, Sections 3.2 { 3.3)

3.5.3 Minimum required type hierarchy

The obligatory minimum type hierarchy in ALE notation is shown in Figure 3.2,
and is depicted as an inheritance graph in Figure 3.3.

Pursuant to ALE's convention, bot serves the root of the type hierarchy. Each
type has a (possibly empty) set of subtypes listed after the sub keyword following the
type name. Furthermore, each type may introduce a list of features which appear
after the intro keyword, while each feature is followed by an appropriate type.

The type hierarchy shown has provisions for up to three arguments per predicate
(argi), though it can easily be extended to incorporate more, should this become
necessary for some particularly sophisticated grammar. The list part of the type
hierarchy allows for encoding lists and other ordered sequences used in args and str
features.

The ellipsis (. . .) denotes values not stipulated by the minimum required type
hierarchy, since inversion and generation do not assume anything about them. For
example, speci�c syntactic categories (values of the cat feature) may vary in actual
grammars, and therefore are not shown. On the other hand, the inversion algorithm
assumes that constituents of input grammar rules have the feature syn, whose values
in turn has the feature cat. Hence both features are required in the type hierarchy,
while the particular values of the latter are not.

Currently, the names of the distinguished features and types (e.g., syn, sem,
pred) are \hard-coded" into the type hierarchy. This way the compiler and the
interpreter assume such features and types to be associated with known names.
Should the need arise, these symbols can be turned into parametric, to be explicitly
supplied with the input grammar.

3Not necessarily restricted to boolean connectives.
4In principle, the Connective Registry may be automatically deduced from the grammar speci-

�cation. To simplify things, we currently supply it as a part of the input grammar.

11

bot sub [sign, syn, syn_term, sem, args, list].

sign sub [phrase].

phrase sub [word] intro [syn:syn, sem:sem, args:args, str:list].

word sub [].

syn sub [] intro [cat:syn_term].

syn_term sub [...].

...

sem sub [const, funct].

const sub [...].

...

funct sub [atomic, quant].

atomic sub[arg_1] intro [pred:sem].

arg_1 sub [arg_2] intro [arg1:sem].

arg_2 sub [arg_3] intro [arg2:sem].

arg_3 sub [] intro [arg3:sem].

quant sub [l_bind] intro [var:sem].

l_bind sub [] intro [rest:sem].

args sub [] intro [larg:list].

list sub [ne_list, e_list].

ne_list sub [] intro [hd:bot, tl:list].

e_list sub [].

Figure 3.2: Minimum required type hierarchy in ALE notation.

12

syn
[cat:syn_term]

args
[larg:list]

atomic
[pred:sem]

quant
[var:sem]

phrase
[syn:syn,
 sem:sem,
 args:args,
 str:list]

arg_3
[arg3:sem]

arg_1
[arg1:sem]

l_quant
[rest:sem]

arg_2
[arg2:sem]

[hd:bot,
 tl:list]

ne_list

sign syn_term

const

sem

funct

bot

e_list

list

word

F
igu

re
3.3:

M
in
im
u
m

req
u
ired

ty
p
e
h
ierarch

y
d
ep
icted

as
a
grap

h
.

13

References

Carpenter, Bob. 1992a. ALE { the attribute logic engine: User's guide. Techni-
cal report, Laboratory for Computational Linguistics, Philosophy Department,
Carnegie Mellon University, Pittsburgh, PA 15213, December.

Carpenter, Bob. 1992b. The Logic of Typed Feature Structures. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press.

Gabrilovich, Evgeniy. 1997. Natural language generation by abstract machine.
Master's thesis, Technion, Israel Institute of Technology, Haifa, Israel. In prepa-
ration.

Ousterhout, John K. 1994. Tcl and the Tk Toolkit. Addison-Wesley Professional
Computing Series. Addison-Wesley.

Samuelsson, Christer. 1995. An e�cient algorithm for surface generation. In Proc.
of the 14th International Joint Conference on Arti�cial Intelligence, Montreal,
Canada, pages 1414{1419. Morgan Kaufmann, August.

Wintner, Shuly. 1997. An Abstract Machine for Uni�cation Grammars. Ph.D.
thesis, Technion { Israel Institute of Technology, Haifa, Israel, January.

Wintner, Shuly and Nissim Francez. 1995a. An abstract machine for typed feature
structures. In Proceedings of the 5th Workshop on Natural Language Under-
standing and Logic Programming, pages 205{220, Lisbon, May.

Wintner, Shuly and Nissim Francez. 1995b. Parsing with typed feature structures.
In Proceedings of the Fourth International Workshop on Parsing Technologies,
pages 273{287, Prague, September.

Wintner, Shuly, Evgeniy Gabrilovich, and Nissim Francez. 1997. AMALIA { a
uni�ed platform for parsing and generation. In R. Mitkov, N. Nicolov, and
N. Nicolov, editors, Proc. of \Recent Advances in Natural Language Processing"
(RANLP'97), pages 135{142, Tzigov Chark, Bulgaria, September.

14

