

A
m
a
l
i
a
{
A

U
n
i�
e
d
P
la
tfo

r
m

fo
r
P
a
r
sin

g
a
n
d
G
e
n
e
r
a
tio

n
�

S
h
u
ly

W
in
tn
e
r
y

S
em

in
a
r
f�u
r
S
p
ra
ch
w
issen

sch
a
ft

U
n
iv
ersit�a

t
T
�u
b
in
g
en

K
l.
W
ilh

elm
str.

1
1
3

7
2
0
7
4
T
�u
b
in
g
en
,
G
erm

a
n
y

s
h
u
l
y
@
s
f
s
.
n
p
h
i
l
.
u
n
i
-
t
u
e
b
i
n
g
e
n
.
d
e E
v
g
e
n
iy

G
a
b
r
ilo
v
ic
h

a
n
d
N
issim

F
r
a
n
c
e
z
z

L
a
b
o
ra
to
ry

fo
r
C
o
m
p
u
ta
tio

n
a
l
L
in
g
u
istics

C
o
m
p
u
ter

S
cien

ce
D
ep
a
rtm

en
t

T
ech

n
io
n
,
Isra

el
In
stitu

te
o
f
T
ech

n
o
lo
g
y

3
2
0
0
0
H
a
ifa

,
Isra

el

f
g
a
b
r
,
f
r
a
n
c
e
z
g
@
c
s
.
t
e
c
h
n
i
o
n
.
a
c
.
i
l

A
b
str

a
c
t

C
o
n
tem

p
o
ra
ry

lin
g
u
istic

th
eo
ries

(in
p
a
rticu

la
r,

H
P
S
G
)
a
re

d
ecla

ra
tiv

e
in

n
a
tu
re:

th
ey

sp
ecify

co
n
stra

in
ts

o
n
p
erm

issib
le

stru
ctu

res,
n
o
t
h
ow

su
ch

stru
ctu

res
a
re

to
b
e
co
m
p
u
ted

.
G
ra
m
-

m
a
rs

d
esig

n
ed

u
n
d
er

su
ch

th
eo
ries

a
re,

th
ere-

fo
re,

su
ita

b
le

fo
r
b
o
th

p
a
rsin

g
a
n
d
g
en
era

tio
n
.

H
ow

ev
er,

p
ra
ctica

l
im

p
lem

en
ta
tio

n
s
o
f
su
ch

th
e-

o
ries

d
o
n
't

u
su
a
lly

su
p
p
o
rt

b
id
irectio

n
a
l
p
ro
-

cessin
g
o
f
g
ra
m
m
a
rs.

W
e
p
resen

t
a
g
ra
m
m
a
r

d
ev
elo

p
m
en
t
sy
stem

th
a
t
in
clu

d
es

a
co
m
p
iler

o
f

g
ra
m
m
a
rs

(fo
r
p
a
rsin

g
a
n
d
g
en
era

tio
n
)
to

a
b
-

stra
ct

m
a
ch
in
e
in
stru

ctio
n
s,
a
n
d
a
n
in
terp

reter
fo
r
th
e
a
b
stra

ct
m
a
ch
in
e
la
n
g
u
a
g
e.

T
h
e
g
en
era

-
tio

n
co
m
p
iler

in
v
erts

in
p
u
t
g
ra
m
m
a
rs
(d
esig

n
ed

fo
r
p
a
rsin

g
)
to

a
fo
rm

m
o
re

su
ita

b
le
fo
r
g
en
era

-
tio

n
.
T
h
e
co
m
p
iled

g
ra
m
m
a
rs
a
re
th
en

ex
ecu

ted
b
y
th
e
in
terp

reter
u
sin

g
o
n
e
co
n
tro

l
stra

teg
y,
re-

g
a
rd
less

o
f
w
h
eth

er
th
e
g
ra
m
m
a
r
is
th
e
o
rig

in
a
l

o
r
th
e
in
v
erted

v
ersio

n
.
W
e
th
u
s
o
b
ta
in

a
u
n
i-

�
ed
,
e�

cien
t
p
la
tfo

rm
fo
r
d
ev
elo

p
in
g
rev

ersib
le

g
ra
m
m
a
rs.

1
In
tr
o
d
u
c
tio

n

T
h
e
p
op
u
larity

of
con

tem
p
orary

lin
gu
istic

for-
m
alism

s
su
ch

as
L
ex
ical

F
u
n
ction

al
G
ram

m
ar

(K
ap
lan

&
B
resn

an
82),

C
ategorial

G
ram

m
ar

(H
ad
d
o
ck

et
a
l.

87)
or

H
ead

-D
riven

P
h
rase-

S
tru

ctu
re

G
ram

m
ar

(H
P
S
G
)
(P
ollard

&
S
ag

94),
an
d
esp

ecially
th
eir

m
ath

em
atical

an
d
form

al
m
a-

tu
rity,

h
ave

led
to

th
e
d
evelop

m
en
t
of

variou
s

fram
ew

ork
s,
ap
p
ly
in
g
d
i�
eren

t
m
eth

o
d
s,
for

th
eir

im
p
lem

en
tation

.
T
h
is
p
ap

er
fo
cu
ses

on
a
com

p
u
tation

al
fram

e-
w
ork

in
w
h
ich

H
P
S
G

gram
m
ars

can
b
e
d
evel-

op
ed
.
A

w
id
e
sp
ectru

m
of

im
p
lem

en
tation

tech
-

n
iq
u
es

for
H
P
S
G

ex
ist:

on
e
ex
trem

e
is
d
irect

in
-

terp
retation

of
gram

m
ars.

F
or

p
arsin

g,
th
is

in
-

volves
a
p
rogram

th
at

accep
ts

as
in
p
u
t
a
gram

-
�
In

R
.
M
itk

ov
,
N
.
N
ico

lov
a
n
d
N
.
N
ik
o
lov

,
ed
s.,

P
ro
-

ceed
in
gs

o
f
\
R
ecen

t
A
d
va
n
ces

in
N
a
tu
ra
l
L
a
n
gu

a
ge

P
rocess-

in
g"

(R
A
N
L
P
'9
7
),
p
p
.
1
3
5
-1
4
2
,
T
zig

ov
C
h
a
rk
,
B
u
lg
a
ria

,
1
1
-1
3
S
ep
tem

b
er

1
9
9
7

y
S
u
p
p
o
rted

b
y
th
e
M
in
erva

S
tip

en
d
ien

K
o
m
itee.

z
S
u
p
p
o
rted

b
y
a
g
ra
n
t
fro

m
th
e
Isra

eli
M
in
istry

o
f
S
ci-

en
ce:

\
P
ro
g
ra
m
m
in
g
L
a
n
g
u
a
g
es

In
d
u
ced

C
o
m
p
u
ta
tio

n
a
l

L
in
g
u
istics"

a
n
d
th
e
F
u
n
d
fo
r
th
e
P
ro
m
o
tio

n
o
f
R
esea

rch
in

th
e
T
ech

n
io
n
.

W
e
th
a
n
k
a
n
a
n
o
n
y
m
o
u
s
rev

iew
er

fo
r

u
sefu

l
co
m
m
en
ts.

m
ar

an
d
a
strin

g
an
d
p
arses

th
e
strin

g
accord

in
g

to
th
e
gram

m
ar.

F
or

gen
eration

,
th
e
in
p
u
t
is

a
sem

an
tic

form
u
la

from
w
h
ich

a
p
h
rase

is
gen

er-
ated

.
T
h
e
earliest

H
P
S
G

p
arsers

(e.g.,
(P
ru
d
ian

&
P
ollard

85;
F
ran

z
90))

w
ere

d
esign

ed
in

th
is

w
ay.

A
sligh

tly
m
ore

elab
orate

tech
n
iq
u
e
is

th
e

u
se
of
som

e
h
igh

-level,
u
n
i�
cation

-b
ased

logic
p
ro-

gram
m
in
g
lan

gu
age

(e.g.,
P
rolog

or
L
IF
E

(A
��t-

K
aci

&
P
o
d
elsk

i
93))

for
sp
ecify

in
g
th
e
gram

m
ar.

F
u
rth

er
alon

g
th
is
lin

e
lies

com
p
ilation

of
gram

-
m
ars

d
irectly

in
to

P
rolog,

u
sin

g
P
rolog's

in
tern

al
m
ech

an
ism

s
for

p
erform

in
g
u
n
i�
cation

.
T
h
is

is
th
e
im

p
lem

en
tation

tech
n
iq
u
e
of,

e.g.,
P
ro�

t
(E
r-

b
ach

94).
S
y
stem

s
su
ch

as
a
l
e
(C

arp
en
ter

92a;
C
arp

en
ter

&
P
en
n
95)

also
com

p
ile

gram
m
ars

in
to

P
rolog.

H
ow

ever,
a
l
e
com

p
iles

gram
m
ar

d
escrip

-
tion

s
d
irectly

in
to

P
rolog

co
d
e,
rath

er
th
an

in
to

(a
P
rolog

rep
resen

tation
of)

featu
re

stru
ctu

res.
A
t

ru
n
tim

e,
a
l
e
ex
ecu

tes
th
e
co
d
e
th
at

w
as

com
-

p
iled

for
th
e
ru
les.

P
arts

of
th
e
u
n
i�
cation

s
(re-

su
ltin

g
from

ty
p
e-u

n
i�
cation

)
are

p
erform

ed
at

com
p
ile-tim

e
to

in
crease

th
e
e�

cien
cy

of
th
e
gen

-
erated

co
d
e.

In
th
is
p
ap

er
w
e
ad
vo
cate

a
fu
rth

er
step

alon
g

th
e
sam

e
sp
ectru

m
.
W
e
p
rop

ose
A
m
a
l
i
a
,
an

ab
-

stract
m
ach

in
e
sp
eci�

cally
d
esign

ed
for

ex
ecu

tin
g

a
l
e

gram
m
ars

(w
ith

ou
t
relation

al
ex
ten

sion
s).

A
m
a
l
i
a
in
clu

d
es

a
com

p
iler

of
in
p
u
t
gram

m
ars

in
to

th
e
ab
stract

m
ach

in
e
lan

gu
age

an
d
an

in
ter-

p
reter

for
th
e
ab
stract

in
stru

ction
s.

T
h
is
im

p
le-

m
en
tation

tech
n
iq
u
e
w
as

p
roved

u
sefu

l
for

m
an
y

p
rogram

m
in
g
lan

gu
ages,

m
ost

n
otab

ly
P
rolog

it-
self

1,
an
d
as

w
e
sh
ow

b
elow

,
it
im

p
roves

th
e
ef-

�
cien

cy
of

p
arsin

g
w
ith

a
l
e
gram

m
ars

con
sid

er-
ab
ly.

W
e
em

p
h
asize

in
th
is
p
ap

er
th
e
m
ore

p
rac-

tical
asp

ects
of

th
e
sy
stem

,
fo
cu
sin

g
on

th
e
in
-

tegration
of

p
arsin

g
an
d
gen

eration
,
as

its
th
e-

oretical
in
fra-stru

ctu
re

h
as

b
een

p
resen

ted
else-

w
h
ere

(W
in
tn
er

&
F
ran

cez
95;

W
in
tn
er

97).

F
rom

th
e
p
oin

t
of

v
iew

of
gram

m
ar

en
gin

eer-

1R
ecen

tly,
su
ch

tech
n
iq
u
es

w
ere

u
sed

fo
r
im

p
lem

en
tin

g
th
e
n
ew

p
ro
g
ra
m
m
in
g
la
n
g
u
a
g
e
J
ava

.

ing, the abstract machine approach has an ad-
ditional advantage. Amalia's compiler incorpo-
rates an algorithm, based on (Samuelsson 95), for
inverting grammars (designed for parsing) into a
form more suitable for generation. The compiler
then produces code for the inverted grammar, us-
ing exactly the same machine language. Thus,
the same grammar can be compiled to two di�er-
ent object programs for the two di�erent tasks.
The interpreter executes both kinds of programs
in the same way { only the initialization of the
machine's state and the format of the �nal re-
sults di�er. We thus obtain a uniform platform
for developing grammars serving both for parsing
and for generation.

We discuss the use of abstract machine tech-
niques for compilation in the next section, and
sketch the algorithm that inverts a grammar for
generation in Section 3. Section 4 explains the
dual operation of the abstract machine, and Sec-
tion 5 lists some implementation details.

2 Why abstract machines?

High-level programming languages with dynamic
structures have always been hard to develop com-
pilers for. A common technique for overcoming
the problems involves the notion of an abstract
machine. It is a machine that, on one hand,
captures the essentials of the high-level language
in its architecture and instruction set, such that
compiling from the source language to the (ab-
stract) machine language becomes relatively sim-
ple. On the other hand, the architecture must
be simple enough for the abstract machine lan-
guage to be easily interpretable on common ma-
chines. This technique also facilitates portable
front ends for compilers: as the machine language
is abstract, it can be easily interpreted on di�er-
ent (concrete) machines/platforms.

Abstract machines were used for various pro-
cedural and functional languages, but they be-
came prominent for logical programming lan-
guages since the introduction of the Warren Ab-
stract Machine (WAM) (Warren 83; A��t-Kaci 91)
for Prolog. While Prolog has gained a recogni-
tion as a practical implementation of the idea of
programming in logic, a method for interpreting
the declarative logical statements was needed for
such an implementation to be well-founded. Even
though there were prior attempts to construct
both interpreters and compilers for Prolog, it was

the WAM that gave the language not only a good,
e�cient compiler, but, perhaps more importantly,
an elegant operational semantics.

The WAM immediately became the starting
point for many compiler designs for Prolog. The
techniques it delineates serve not only for Pro-
log proper, but also for constructing compilers
for related languages: parallel Prolog compilers,
variants of Prolog that use di�erent resolution
methods, extend Prolog with types or with record
structures, etc. An additional advantage of ab-
stract machines is that they are a useful tool in
formally verifying the correctness of compilers.

3 Inverting grammars for generation

One of the attractions of declarative linguistic
theories such as HPSG is that a single grammar,
formulated in the theory, can be used both for
parsing and for generation. While this is true in
theory, not many practical implementations of lin-
guistic formalisms support bidirectional grammar
processing. Many advantages of bidirectional nat-
ural language systems are listed in (Strzalkowski
94), where three options for reversibility are con-
sidered (pp. xiii-xxi): (1) A grammar is compiled
into two separate programs, parser and generator,
requiring a di�erent evaluation strategy; (2) The
parser and the generator are separate programs,
executed using the same evaluation strategy; (3)
The parser and the generator are one program,
and the evaluation strategy can handle it being
run in either direction. Our solution falls into the
second category: there is only one input grammar,
which is compiled into two di�erent (abstract ma-
chine) object programs; these two programs are
executed using exactly the same mechanism, the
interpreter, and hence employ the same strategy.
This guarantees both ease of grammar develop-
ment and maintenance and no loss of e�ciency.

Grammars are usually oriented towards the
analysis of a string and not towards generation
from a (usually nested) semantic form. In other
words, rules reect the phrase structure and not
the predicate-argument structure. It is therefore
desirable to transform the grammar in order to
enable systematic reection of any given logical
form in the productions. To this end we apply
an inversion procedure, based upon2 (Samuelsson

2Samuelsson's inversion algorithm was developed for
de�nite clause grammars (Pereira & Warren 80). We
ported it to a typed feature-structure framework.

2

95), to render the rules with the nested predicate-
argument structure, corresponding to that of in-
put logical forms. Once the grammar is inverted,
the generation process can be directed by the in-
put semantic form; elements of the input are con-
sumed during generation just like words are con-
sumed during parsing.

Figure 1 depicts a simple example grammar in
ale format3 (prd stands for predicate, a for ar-
gument, var for variable, rst for restriction and
conn for connective). The �rst rule creates a sen-
tence (S) out of a noun phrase (NP) and a verb
phrase (VP). The semantics of the S (denoted by
the variable R6) is obtained by applying the se-
mantics of the NP (�R5:R6) to that of the VP. In
the same way, the second rule, combining a deter-
miner (DET) with a noun (N) to obtain an NP,
applies the meaning of the DET to that of the N
to obtain (after two �-reductions that are incor-
porated into the rule) the meaning of the NP. The
lexical entries of three words are shown as well.

Figure 2 depicts (part of) the same grammar
after inversion. The inverted grammar reects
the semantic argument structure, not the phrase
structure. For example, the �rst rule creates
a sentence, whose sem feature corresponds to
8R5:(R8(R5) ! R10(R5)), from three compo-
nents: an N (R8), a VP (R10) and a semantic
head, R3. The string generated by the S, en-
coded as the value of the str feature (see below),
is the concatenation of the strings generated by
the head, the N and the VP. For such rules to
be applicable, the lexicon has to be inverted, too:
the \words" of the inverted grammar are atomic
semantic formulae. The last three rules add syn-
tactic information to the semantics encoded in the
primitives. In addition to these inverted rules, a
semantic knowledge base is generated, associat-
ing semantic primitives with words. It is used in
the �nal stage of the generation, when the actual
words are generated.

Grammars must satisfy certain requirements in
order for them to be invertible. However, the re-
quirements are not overly restrictive and allow en-
coding of a variety of natural language grammars.
In particular, the semantics must be encoded by
predicate-argument structures. What the inver-
sion in fact achieves is restructuring of a gram-
mar; this enables e�ective treatment of the nested
structure of logical forms, so that the resulting

3The signature is omitted for lack of space.

grammar is inherently suitable for generation.

Grammar inversion is performed as part of the
compilation. The given grammar is enhanced in
a way that will ultimately enable to reconstruct
the words spanned by the semantic forms. To
achieve this aim, each rule constituent is extended
by an additional special-purpose feature (str in
the example grammar). The value of this feature
for the rule's head is set to the concatenation of
its values in the body constituents, to reect the
original phrase structure of the rule.

Among the other advantages of the abstract
machine approach mentioned above, this tech-
nique gives an express solution for the termina-
tion problem. It is usually di�cult to de�ne when
generation terminates, but once the query is given
as a sequence of semantic components, they are
consumed in a linear manner. While generation,
just like parsing, is not guaranteed to terminate,
the termination criteria of parsing apply for our
generation scheme. In other words, generation in
our system can be viewed as parsing (`consum-
ing') input sequences of meaning components.

4 Uni�ed parsing and generation

Amalia employs a bottom-up chart based con-
trol unit, where rules are evaluated from left to
right. The chart is used for storing active and
complete edges. The latter are represented as
pointers to feature structures; the former con-
sist of a sequence of such pointers (for the part
of the edge prior to the dot) and a pointer to
the compiled code (for the part succeeding the
dot). For parsing, edges span a sub-sequence of
the input string, assigning it some structure. For
generation, edges span a sub-form of the input
semantic form, also assigning it a structure that
eventually determines a phrase whose meaning is
that sub-form. It must be noted that at run-time
there is no notion of the particular task (pars-
ing/generation) performed by the machine, and
the e�ect of the machine instructions is the same
for both tasks.

Amalia's operation for generation di�ers from
parsing only in initialization and interpretation
of the results. For parsing, the input is a string
of words. Each word is looked up in the lexi-
con, and its associated feature structure (or fea-
ture structures, in case the word is ambiguous)
is entered in the main diagonal of the chart as
a complete edge. Thus, for the example gram-

3

(phrase, syn:(syn, cat:s), sem:(R6, sem))
===>
cat> (phrase, syn:(syn, cat:np), sem:(lambda, (var:R5, rst:(R6, funct)))), % head
cat> (phrase, syn:(syn, cat:vp), sem:(lambda, (var:R7, rst:(R5, funct)))).

(phrase, syn:(syn, cat:np), sem:(R6, sem))
===>
cat> (phrase, syn:(syn, cat:det), sem:(lambda, (var:R5, rst:(R6, funct)))), % head
cat> (phrase, syn:(syn, cat:n), sem:(lambda, (var:R7, rst:(R5, funct)))).

every --->
(word, syn:(syn, cat:det),
sem:(lambda, var:R5,

rst:(lambda, var:R6,
rst:(prd:(forall, var:R2, form:(bool, conn:if,

wff1:(R5, a1:R2),
wff2:(R6, a1:R2))),

a1:R5, a2:R6)))).
boy --->
(word, syn:(syn, cat:n), sem:(lambda, var:R5, rst:(prd:boy, a1:R5))).

sleeps --->
(word, syn:(syn, cat:vp), sem:(lambda, var:R5, rst:(prd:sleep, a1:R5))).

Figure 1: A simple grammar

(phrase, syn:(syn,cat:s), str:[R3,R19,R22],
sem:(R3, prd:(forall, var:R5, form:(conn:if,

wff1:(R8,a1:R5),
wff2:(R10,a1:R5))),

a1:R8, a2:R10))
===>
(phrase, syn:cat:n, sem:(lambda, rst:R8), str:R19),
(phrase, syn:cat:vp, sem:(lambda, rst:R10), str:R22),
(lambda, var:R8, rst:(lambda, var:R10, rst:R3)).

(word, syn:cat:n, sem:R3, str:[R5])
===>
(R3, lambda, var:R4, rst:(R5, prd:noun, a1:R4)).

(word, syn:cat:vp, sem:R3, str:[R5])
===>
(R3, lambda, var:R4, rst:(R5, prd:v_intrans, a1:R4)).

(word, syn:cat:det, sem:R3, str:[R10])
===>
(R3, lambda, var:(R4,a1:R6),

rst:(lambda, var:(R8, a1:R6),
rst:(R10,prd:(forall, var:R6, form:(conn:if, wff1:R4, wff2:R8)),

a1:R4, a2:R8))).

Figure 2: The inverted grammar (partial)

mar and the input \every boy sleeps", the items
in the [0; 1]; [1; 2]; [2; 3] entries of the chart are as
depicted in Figure 3.

For generation, the input is a semantic form,
represented as (an ale description of) a feature
structure. The chart is initialized with (com-
plete) edges that correspond to elements in the
input semantic form, rather than to words. For
example, if the input is (a feature structure en-
coding of) 8x(boy(x) ! sleep(x)), the items in

the [0; 1]; [1; 2]; [2; 3] entries of the chart are as
depicted in Figure 4. The �rst item encodes
�x:boy(x); the second { �x:sleep(x); and the third
{ �P:�Q:8x(P (x)! Q(x)).

It must be clear that there doesn't have to be
a 1� 1 correspondence between the initial states
of the chart in both tasks. The semantic input is
scanned and its elements are (recursively) selected
in a pre-de�ned order that is induced by the re-
structuring of the grammar rules (in particular,

4

2
66666666666666666666666666664

word

syn :

�
syn

cat :
�
det
��

sem :

2
66666666666666666666664

�

var : 5

"
arg 1

prd :
�
prd

�
a1 : 2

#

rst :

2
66666666666666664

�

var : 6

"
atom

prd :
�
prd

�
a1 : 2

#

rst :

2
6666666664

arg 2

prd :

2
66664

8

var : 2
�
sem

�
form :

2
64
bool

conn :
�
if
�

w�1 : 5

w�2 : 6

3
75

3
77775

a1 : 5

a2 : 6

3
7777777775

3
77777777777777775

3
77777777777777777777775

3
77777777777777777777777777775

2
666666664

word

syn :

�
syn

cat :
�
n
��

sem :

2
664
�

var : 7
�
sem

�
rst :

"
atom

prd :
�
boy

�
a1 : 7

#
3
775

3
777777775

2
666666664

word

syn :

�
syn

cat :
�
vp
��

sem :

2
664
�

var : 9
�
sem

�
rst :

"
atom

prd :
�
sleep

�
a1 : 9

#
3
775

3
777777775

Figure 3: Initial chart entries, parsing

arguments precede the predicate).

Once the chart is initialized, the same process-
ing strategy is applied independently of the task:
the compiled program is executed on the input.
The basic operation performed by the object pro-
grams is uni�cation, which is needed for both
tasks. Uni�cation implements the dot movement
operation that lies in the heart of chart-based
parsing and generation. However, dot movement
is interpreted di�erently for both tasks, since the
(compiled) grammar rules are di�erent: for pars-
ing, dot movement goes over a sub-part of the
input phrase; for generation, it covers a part of
the input logical form.

Consider the e�ect of dot movement for pars-
ing: assume that an active edge corresponding to
the second rule with the dot in the initial position
is applied to the lexical entry of \every", present

2
664
�

var : 1
�
sem

�
rst :

"
arg 1

prd :
�
boy

�
a1 : 1

#
3
775

2
664
�

var : 2
�
sem

�
rst :

"
arg 1

prd :
�
sleep

�
a1 : 2

#
3
775

2
66666666666666666666664

�

var : 3

"
arg 1

prd :
�
sem

�
a1 : 4

�
sem

�
#

rst :

2
66666666666666664

�

var : 8

"
arg 1

prd :
�
sem

�
a1 : 4

#

rst :

2
6666666664

arg 2

prd :

2
66664

8

var : 4

form :

2
64
bool

conn :
�
if
�

w�1 : 3

w�2 : 8

3
75

3
77775

a1 : 3

a2 : 8

3
7777777775

3
77777777777777775

3
77777777777777777777775

Figure 4: Initial chart entries, generation

in [0; 1]. The compiled code of the second rule
is executed on \every"; some trivial uni�cations
take place, but the more interesting ones bind R5

of the rule to the value of the tag 5 in the lexical
entry, and R6 { to the value of the path sem:rst.
A new active edge is created, with these bindings
recorded, and entered in [0; 1]. The part of the
edge following the dot points to the second cate-
gory in the body of this rule. Assume further that
this edge is combined with (the complete edge
that is) the lexical entry of \boy". Several trivial
uni�cations take place, but the interesting ones
bind R7 in the rule to the tag 7 in \boy", and R5

of the rule to the value of sem:rst in \boy". Due
to reentrancies among the rule's constituents, the
obtained (complete) edge (spanning [0; 2]), whose
sem feature indeed encodes the semantics of \ev-
ery boy" (�Q:8x(boy(x)! Q(x))), is as depicted
in Figure 5.

Next, we give a scenario of a generation process.
It is easy to see how the last three rules of the in-
verted grammar are applicable to the three lexical
entries of Figure 4, respectively. Assume an ac-
tive edge corresponding to the �rst rule is present
in [0; 0], with the dot in the initial position. Two

5

2
6666666666666666666666664

phrase

syn :

�
syn

cat :
�
np
��

sem :

2
66666666666666666664

�

var : 2

"
arg1

prd :
�
sem

�
a1 : 6

#

rst :

2
6666666666664

arg2

prd :

2
66666664

8

var : 6

form :

2
66664

bool

conn :
�
if
�

w�1 : 9

"
arg1

prd :
�
boy

�
a1 : 6

#

w�2 : 2

3
77775

3
77777775

a1 : 9

a2 : 2

3
7777777777775

3
77777777777777777775

3
7777777777777777777777775

Figure 5: Parsing (intermediate) result

dot movements, over the �rst two elements in the
body of this rule, bind R8 to the value of rst in
the lexical entry of �(x):boy(x), and R10 { to the
value of rst in �(x):sleep(x). An active edge, with
the dot in the penultimate position, is obtained in
[0; 2]. The next dot movement applies (the code
that was generated for) the last body element of
the rule to the lexical entry residing in [2; 3]. R8

of the rule is uni�ed with the value of the tag 3

in this entry; since R8 was bound by previous uni-
�cations, the value of prd is set to boy. R10 of the
rule is uni�ed with the value of 8 , and the sec-
ond predicate is set to sleep. Finally, R3 is uni�ed
with the value of rst:rst in the lexical entry; the
complete edge created, spanning the entire input,
is depicted in Figure 6.

The chart algorithm ends up with a (possibly
empty) set of feature structures, spanning the en-
tire input: these are all the complete edges deriv-
able from the input and the grammar rules (there
is no notion of an initial symbol). Of course, if the
grammar is such that an in�nite number of deriva-
tions can be produced, computations might not
terminate (Amalia does not incorporate a sub-
sumption check to test for spurious ambiguity).
For parsing, the results depict di�erent structures
of the input string. Ideally, they contain some
representation of the string's semantics. This is
also true for generation, with a slight di�erence:
according to the grammar inversion algorithm,
each resultant structure is guaranteed to have a
feature (namely, str) that encodes a list of words,
comprising the phrase generated. As can be seen

2
666666666666666666666664

phrase

syn :

�
syn

cat :
�
s
��

sem : 6

2
66666666666666664

arg 2

prd :

2
666666666664

8

var : 2

form :

2
66666664

bool

conn :
�
if
�

w�1 : 3

"
arg 1

prd :
�
boy

�
a1 : 2

#

w�2 : 7

"
arg 1

prd :
�
sleep

�
a1 : 2

#

3
77777775

3
777777777775

a1 : 3

a2 : 7

3
77777777777777775

str : h 6 ; 3 ; 7 i

3
777777777777777777777775

Figure 6: Generation result

in the example (Figure 6), the value of this feature
is not a list of words but rather a list of feature
structures, each of which corresponds to (i.e., is
subsumed by) a lexical entry in the inverted gram-
mar. A �nal post-processing stage generates all
the possible strings using this list and the seman-
tic knowledge base.

5 Implementation

This section describes the input language for
Amalia grammars and touches on some imple-
mentation details. In particular, it discusses the
di�erences between Amalia and ale in terms of
expressiveness and e�ciency.

Amalia supports the same type hierarchies as
ale does, with exactly the same speci�cation syn-
tax. This means that the user can specify any
bounded-complete partial order as the type hi-
erarchy. Only immediate sub-types are speci�ed,
and the reexive-transitive closure of the sub-type
relation is computed automatically by the com-
piler. The special type bot must be declared as
the unique most general type.

Appropriateness, too, is speci�ed using ale's
syntax, by listing features at the type they are in-
troduced by. The feature introduction condition
must be obeyed: every feature must be introduced
by some most general type, and is appropriate for
all its sub-types. However, Amalia allows ap-
propriateness loops4 in the type hierarchy. Type
constraints are not supported by Amalia.

4Appropriateness loops are handled by employing lazy
evaluation techniques at run-time.

6

Amalia uses a subset of ale's syntax for de-
scribing feature structures. As a rule, whenever
Amalia supports ale's functionality, it uses the
same syntax. In general, Amalia supports to-
tally well-typed, possibly cyclic, non-disjunctive
feature structures. Set values, as in ale, are
not supported, but list values are. Amalia does
not respect the distinction between intensional
and extensional types (Carpenter 92b, Chapter
8). Also, feature structures cannot incorporate
inequality constraints.

The semantics of the logical descriptions, as
well as the operator precedence, follow ale. As
in ale, partial descriptions are expanded at com-
pilation time. Amalia's compiler performs type
inference on partial descriptions, reports any in-
consistencies, and then creates code for the ex-
panded structures. To avoid in�nite processing in
the face of appropriateness loops (where no �nite
totally well-typed structure that satis�es the de-
scription might exist), the compiler stops expand-
ing a structure if it is the most general structure
of its type.

ale includes a built-in de�nite logic program-
ming language; Amalia does not. The entire
power of de�nite clause speci�cations is missing in
Amalia. However, a few common functions that
are external to the feature structure formalism
were added to the system, and grammar speci�-
cations can use them. These features are referred
to as goals, although it must be remembered that
they are far weaker than ale's goals.

Amalia preserves ale's syntax in describing
lexical entries. Multiple lexical entries may be
provided for each word, separated by semicolons.
It also keeps ale's syntax in the de�nition of
empty categories (or �-rules). In contrast to ale,
Amalia processes empty categories at compile
time. Each empty category is matched by the
compiler against each element in the body of ev-
ery rule; if the uni�cation succeeds, a new rule is
added to the grammar, based upon the original
rule, with the matched element removed. Some
limitations apply for this process (which in the
general case is not guaranteed to terminate), and
therefore the resulting grammar might not be
equivalent to the original one.

Amalia supports macros in a similar way to
ale. The syntax is the same, and macros can have
parameters or call other macros (though not re-
cursively, of course). ale's special macros for lists

are supported by Amalia. Lexical rules are not
supported in this version of Amalia. Amalia's
syntax for phrase structure rules is similar to
ale's, with the exception of the cats> speci�-
cation (permitting a list of categories in the body
of a rule) which is not supported.

The design details of the abstract machine are
outside the scope of this paper; the reader is re-
ferred to (Wintner & Francez 95; Wintner 97)
for more information on the machine itself and
to (Gabrilovich 97) for a detailed description of
the grammar inversion. A practical description of
Amalia, its deviations from ale and a complete
user's guide, are given in (Wintner et al. 97).

Amalia is implemented in C, augmented by
yacc, lex and Tcl/Tk (Ousterhout 94). It was
tested on various Unix platforms and on IBM
PCs. Two versions of Amalia exist: an inter-
active, easy-to-use, graphically interfaced system
and a text-oriented, non-interactive one. The for-
mer is intended for developing prototype gram-
mars; the latter is far more e�cient but less user-
friendly, and is intended to be used for batch
processing. In addition, the system functions as
a graphical development framework for grammar
engineers by providing some tracing and debug-
ging options. The user can direct the system to
execute a program in its entirety, to break at a
certain instruction or to proceed in steps, stop-
ping after each executed instruction. Throughout
the process of grammar execution, the abstract
machine's internal state is displayed for the user
to inspect. The main data structure upon which
feature structures are being built, the heap, is dis-
played, along with the machine's general-purpose
and special-purpose registers. Moreover, the con-
tents of the chart can be graphically displayed at
any time and the derived structure can be recov-
ered. Grammar development becomes an easier,
simpler process.

The system was tested with a wide variety of
grammars, mostly adaptations of existing ale

grammars. While most of the example grammars
are rather small, we believe that the system can
handle real-scale grammar quite e�ciently; how-
ever, to accommodate large type hierarchies some
major space optimizations must be introduced.
It is important to emphasize that Amalia does
not provide the wealth of input speci�cations ale
does. On the other hand, development of gram-
mars in Amalia is made easier due to the GUI

7

and the improved performance over ale. The
support of generation is unique to our system.
To compare Amalia with ale we have used a

few benchmark grammars. The �rst is an early
version of an HPSG-based Hebrew grammar de-
scribed in (Wintner 97). It consists of 4 rules and
one empty category; the type hierarchy contains
84 types and 32 features, and the lexicon contains
13 words. The second is an HPSG-based gram-
mar for a subset (emphasizing relative clauses) of
the Russian language described in (Gabrilovich &
Estrin 96). It consists of 8 rules and 76 lexical en-
tries; the type hierarchy contains 151 types and 31
features. The third example is a simple grammar
generating the language fanbn j n > 0g. Both
systems were used to compile the same grammar
and to parse the same strings. The results of a
performance comparison of Amalia and ale are
listed in Figure 7 (all times are in seconds; n in-
dicates the input string's length and r { the num-
ber of results). While the execution times for the
last grammar are less impressing, the di�erences
in compilation time indicate a major advantage
in using Amalia for instructional purposes; in
such cases grammars are compiled over and over
again, while they are usually executed only a few
times. Limited experiments we have conducted
reveal that generation (as well as compilation for
generation) is 40%{100% slower than parsing (we
do not know of good benchmarks for generation).

task ale Amalia

Grammar 1
Compilation 35.0 1.4
Parsing, n=6, r=2 0.5 0.5
Parsing, n=10, r=8 3.2 0.8
Parsing, n=14, r=125 140.0 9.0

Grammar 2
Compilation 68.0 2.3
Parsing, n=2, r=2 0.5 0.8
Parsing, n=4, r=2 2.4 0.9
Parsing, n=7, r=2 5.1 1.1
Parsing, n=8, r=2 7.8 1.2
Parsing, n=12, r=2 17.0 1.5

Grammar 3
Compilation 6.5 0.2
Parsing, n=4 0.1 0.2
Parsing, n=8 0.8 0.3
Parsing, n=16 2.8 1.1
Parsing, n=32 26.0 16.0

Figure 7: Performance comparison of ale and
Amalia

References
(A��t-Kaci & Podelski 93) Hassan A��t-Kaci and Andreas Podelski.

Towards a meaning of LIFE. Journal of Logic Programming,

16(3-4):195{234, July-August 1993.

(A��t-Kaci 91) Hassan A��t-Kaci. Warren's Abstract Machine: A
Tutorial Reconstruction. Logic Programming. The MIT Press,
Cambridge, Massachusetts, 1991.

(Carpenter & Penn 95) Bob Carpenter and Gerald Penn. Compil-
ing typed attribute-value logic grammars. In Harry Bunt and
Masaru Tomita, editors, Current Issues in Parsing Technolo-
gies, volume 2. Kluwer, 1995.

(Carpenter 92a) Bob Carpenter. ALE { the attribute logic engine:
User's guide. Technical report, Laboratory for Computational
Linguistics, Philosophy Department, Carnegie Mellon University,
Pittsburgh, PA 15213, December 1992.

(Carpenter 92b) Bob Carpenter. The Logic of Typed Feature Struc-
tures. Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, 1992.

(Erbach 94) Gregor Erbach. ProFIT: Prolog with features, in-
heritance and templates. CLAUS Report 42, Computerlinguis-
tik, Universit�at des Saarlandes, D-66041, Saarbr�ucken, Germany,
July 1994.

(Franz 90) Alex Franz. A parser for HPSG. Report CMU-LCL-
90-3, Laboratory for Computational Linguistics, Department of
Philosophy, Carnegie Mellon University, Pittsburgh, PA 15213,
July 1990.

(Gabrilovich & Estrin 96) Evgeniy Gabrilovich and Arkady Estrin.
An HPSG grammar for the Russian language. To appear as a
technical report, Laboratory for Computational Linguistics, the
Technion, 1996.

(Gabrilovich 97) Evgeniy Gabrilovich. Natural language generation
by abstract machine. M.Sc. thesis, Technion, Israel Institute of
Technology, Haifa, Israel, 1997. In preparation.

(Haddock et al. 87) Nicholas Haddock, Ewan Klein, and Glyn Mo-
rill, editors. Categorial Grammar, Uni�cation and Parsing,
volume 1 of Working Papers in Cognitive Science. University
of Edinburgh, Center for Cognitive Science, 1987.

(Kaplan & Bresnan 82) R. Kaplan and J. Bresnan. Lexical func-
tional grammar: A formal system for grammatical represen-
tation. In J. Bresnan, editor, The Mental Representation of
Grammatical Relations, pages 173{281. MIT Press, Cambridge,
Mass., 1982.

(Ousterhout 94) John K. Ousterhout. Tcl and the Tk Toolkit.
Addison-Wesley Professional Computing Series. Addison-Wesley,
1994.

(Pereira &Warren 80) Fernando C. N. Pereira and David H. D. War-
ren. De�nite clause grammars for language analysis { a survey
of the formalism and a comparison with augmented transition
networks. Arti�cial Intelligence, 13:231{278, 1980.

(Pollard & Sag 94) Carl Pollard and Ivan A. Sag. Head-Driven
Phrase Structure Grammar. University of Chicago Press and
CSLI Publications, 1994.

(Prudian & Pollard 85) Derek Prudian and Carl Pollard. Pars-
ing head-driven phrase structure grammar. In Proceedings of
the 23rd Annual Meeting of the Association for Computational
Linguistics, Chicago, IL., 1985. University of Chicago.

(Samuelsson 95) Christer Samuelsson. An e�cient algorithm for
surface generation. In Proceedings of the International Joint
Conference on Arti�cial Intelligence, 1995.

(Strzalkowski 94) Tomek Strzalkowski, editor. Reversible Gram-
mar in Natural Language Processing. The Kluwer International
Series in Engineering and Computer Science. Kluwer Academic
Publishers, 1994.

(Warren 83) David H. D. Warren. An abstract Prolog instruction
set. Technical Note 309, SRI International, Menlo Park, CA.,
August 1983.

(Wintner & Francez 95) Shuly Wintner and Nissim Francez. An
abstract machine for typed feature structures. In Proceedings
of the 5th Workshop on Natural Language Understanding and
Logic Programming, pages 205{220, Lisbon, May 1995.

(Wintner 97) Shuly Wintner. An Abstract Machine for Uni�cation
Grammars. PhD thesis, Technion { Israel Institute of Technol-
ogy, Haifa, Israel, January 1997.

(Wintner et al. 97) Shuly Wintner, Evgeniy Gabrilovich, and Nis-
sim Francez. AMALIA { Abstract MAchine for LIinguistic Ap-
plications { user's guide. Laboratory for Computational Linguis-
tics, Computer Science Deparmtent, Technion, Israel Institute of
Technology, 32000 Haifa, Israel, January 1997.

8

