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Abstract 
The Java Native Interface (JNI) [1] provides interoperation between Java code running on 
a Java Virtual Machine and code written in other programming languages (e.g., C++ or 
assembly). The JNI is useful when existing libraries need to be integrated into Java code, 
or when portions of the code are implemented in other languages for improved 
performance. The Java Native Interface is extremely flexible, allowing Java methods to 
invoke native methods and vice versa, as well as allowing native functions to manipulate 
Java objects. However, this flexibility comes at the expense of extra effort for the native 
language programmer, who has to explicitly specify how to connect to various Java 
objects (and later to disconnect from them, to avoid resource leak). We suggest a 
template-based framework that relieves the C++ programmer from most of this burden. 
In particular, the proposed technique provides automatic selection of the right functions 
to access Java objects based on their types, automatic release of previously acquired 
resources when they are no longer necessary, and overall simpler interface through 
grouping of auxiliary functions. 

Introduction 
The Java Native Interface1 is a powerful framework for seamless integration between 
Java and other programming languages (called “native languages” in the JNI 
terminology). A common case of using the JNI is when a system architect wants to 
benefit from both worlds, implementing communication protocols in Java and 
computationally expensive algorithmic parts in C++ (the latter are usually compiled into 
a dynamic library, which is then invoked from the Java code). The JNI renders native 
applications with much of the functionality of Java, allowing them to call Java methods, 
access and modify Java variables, manipulate Java exceptions, ensure thread-safety 
through Java thread synchronization mechanisms, and ultimately to directly invoke the 
Java Virtual Machine. 
 
This functional wealth is provided through a rather complex interface between the native 
code and the Java programming environment. For example, accessing an integer Java 
member variable from the native code is a multi-step process, which involves first 
querying the class type whose variable is to be retrieved (using the JNI function 
GetObjectClass), obtaining the field identifier (using GetFieldID), and finally retrieving the 
field per se (using GetIntField). The latter function is a representative of a set of functions 
(Get<type>Field), each corresponding to a different variable type; thus, accessing a 
variable requires explicit specification of the appropriate function. To streamline these 
steps, we suggest using a template (parameterized with a variable type), which 
encapsulates all these low-level operations, giving the programmer easy-to-use 
assignment/modification functionality similar to that of native C++ variables. As far as 
                                                 
1 See the sidebar. 



data types are concerned, we develop a complete set of templates for primitive types (jint, 
jfloat etc.), as well as outline a generic approach for accessing any user-defined type. 
 
Observe also that there are a number of JNI API functions, which are complementary in 
their nature. For example, if a native function has a parameter of type jstring, it should 
first convert this parameter into a conventional C++ string of chars using GetStringChars 
(or GetStringUTFChars), and subsequently explicitly release this temporary representation 
using the corresponding function ReleaseStringChars (or ReleaseStringUTFChars). This 
mode of operation could be greatly simplified by implementing a proxy-style smart 
pointer, which realizes the “construction as resource acquisition” idiom [2]. This way, a 
Java string is transparently converted on access into a C++ string (char*), and when it 
later goes out of scope, the smart pointer destructor releases any temporary resources 
used. The proxy also provides proper handling of the transfer of ownership, similarly to 
the C++ standard auto_ptr construct [3]. We also suggest analogous treatment for Java 
arrays, featuring automatic selection of the access function based on the actual element 
type (e.g., Get<Int>ArrayElements), releasing array elements in the destructor of this “smart 
container”, and conventional access to array elements with operator[]. The “construction 
as resource acquisition” idiom may also be applied to function pairs such as NewGlobalRef 
/ DeleteGlobalRef used for reservation and release of global references (respectively), 
MonitorEnter / MonitorExit used for protecting critical sections of code etc. 
 
To make the discussion concrete, we start with developing a running example which 
solves a toy problem. We first show the native code for solving this task without using 
the framework (“before”), and then show the desired code (“after”), streamlined using the 
proposed framework. In a subsequent section we develop the JNI encapsulation 
framework step by step. The article ends with a larger-scale example. The entire code for 
this article with complete Java – C++ integration examples can be obtained from the C++ 
Report Web site at http://www.creport.com. 

Running example 
Our toy problem defines a Java class JniExample with an integer, a static String and an 
integer array fields. Function main calls a native function implemented in C++, that 
accesses the Java fields, prints their original (default) values, and ultimately modifies 
them. Listing 1 shows (a fragment of) the Java class whose variables need to be accessed 
from C++ code. 

Listing 1. A Java class for the running example (excerpt from JniExample.java):  
public class JniExample { 
   public int intField = 17;    // integer field 
   public static String stringField = "Hello, world!";   // static String field 
   public int[] intArray = new int[2];   // integer array 
   … 
   private static native void native_call(JniExample x); // sample native call 
   … 
} 
 



Listing 2 shows sample implementation of native C++ code that modifies the above 
variables, implemented using the original JNI [1]. Observe that on average 3 to 4 
preparatory operations are necessary to access a Java field from the native code. The 
revised code in Listing 3 reduces this overhead to one constructor invocation per access. 
Note also that assignment to Java fields becomes more intuitive too. 

Listing 2. Sample native code that uses the original JNI (excerpt from 
jni_example_org.cpp): 
JNIEXPORT void JNICALL Java_JniExample_org_1native_1call (JNIEnv *env, jclass clazz, jobject obj) { 
  // Lookup the integer field ('intField') in 'obj' and get its value 
  jfieldID intFieldId = env->GetFieldID(clazz, "intField", "I"); 
  if (id == 0) throw JNIException("Field not found"); 
  int intFieldVal = env->GetIntField(obj, intFieldId); 
 
  // Lookup the static String field ('stringField') in 'obj', then convert the Java string representation 
  // to C++ type 'const char *'. 
  jfieldID strFieldId = env->GetStaticFieldID(clazz, "stringField", "Ljava/lang/String;"); 
  if (id == 0) throw JNIException("Field not found"); 
  jstring jstr = (jstring) env->GetStaticObjectField(clazz, strFieldId); 
  const char *str = (jstr == 0) ? 0 : env->GetStringUTFChars(jstr, 0); 
 
  // Lookup the integer array field ('intArray') in 'obj', then convert it to C++ type 'jint *'. 
  jfieldID arrFieldId = env->GetFieldID(clazz, "intArray", "[I"); 
  if (id == 0) throw JNIException("Field not found"); 
  jintArray jarr = (jintArray) env->GetObjectField(obj, arrFieldId); 
  jint *arr = env->GetIntArrayElements(jarr, 0); 
 
  // Set new values 
  env->SetIntField(obj, intFieldId, 0); 
  arr[0] = 0; arr[1] = 0; 
  env->SetStaticObjectField(clazz, strFieldId, env->NewStringUTF("Good-bye, world!")); 
 
  // Explicitly release resources 
  env->ReleaseIntArrayElements(jarr, arr, 0); 
  env->ReleaseStringUTFChars(jstr, str); 
} 

Listing 3. Sample native code that uses the JNI encapsulation framework (excerpt from 
jni_example.cpp): 
JNIEXPORT void JNICALL Java_JniExample_native_1call (JNIEnv *env, jclass clazz, jobject obj) { 
  // Lookup the Java fields in 'obj' 
  JNIField<jint> intField(env, obj, "intField"); 
  JNIStringUTFChars str(env, "JniExample", "stringField"); 
  JNIArray<jint> arr(env, obj, "intArray"); 
 
  // Set new values  
  intField = 0; 
  arr[0] = 0; arr[1] = 0; 
  JNIStaticField<jstring>(env, obj, "stringField") = env->NewStringUTF("Good-bye, world!"); 
 
  // Destructors for 'arr' and 'str' are invoked automatically 
} 



Template-based encapsulation of the JNI 
In this section we evolve the JNI encapsulation framework. First, we discuss access to 
scalar variables (of both primitive and user-defined types). We then develop a generic 
resource management scheme which underlies the implementation of containers (arrays 
and strings). Finally, we apply this scheme to advanced JNI features such as monitors and 
global references. 

Field access 
Accessing a Java variable from C++ is a cumbersome process at the least. Our aim is to 
develop a technique for establishing correspondence between a C++ object and the Java 
variable, so that all low-level access operations become transparent to the programmer. 
For example, a C++ object corresponding to intField is a proxy2 of type JNIField<jint>, 
created using the environment handle and the Java object passed via the JNI native call: 
JNIField<jint> intField(env, obj, "intField"). Then changing the variable value in C++ is as simple as 
that: intField = 17. 
 
To this end, we use a template class JNIField (see Listing 4), whose three constructors 
present three ways to attach a C++ variable to a Java field. The first constructor receives 
an environment handle, a reference to the Java object whose field is to be accessed, the 
field name and type signature, and connects to the designated field. The second 
constructor allows creation of fields whose type signature may be deduced automatically 
(more on this below). Both constructors compute the field identifier (using implicit calls 
to the JNI functions GetObjectClass and GetFieldId; see Listing 5), and store it together 
with the object handle. The assignment and casting operators provide easy access to the 
variable value.  
Occasionally, it might be necessary to access the same field in numerous Java objects of 
the same type (e.g., iterating over array elements). In such a case, the field identifier may 
be computed only once, and cached for subsequent reuse; this mode is supported by the 
third constructor. 

Listing 4. JNIField template (excerpt from jni_field.h):  
template<class NativeType> class JNIField { 
   typedef JNIField<NativeType> _self; 
   jobject _obj;   // Object that holds the field 
   JNIFieldId<NativeType> _id; // field ID 
 
public: 
   JNIField(JNIEnv *env, jobject obj, const char *name, const char *sig) : 
 _obj(obj), _id(env, obj, name, sig) {} 
   JNIField(JNIEnv *env, jobject obj, const char *name) : 
 _obj(obj), _id(env, obj, name) {} 
   JNIField(JNIFieldId<NativeType> id, jobject obj) : _obj(obj), _id(id) {} 
 
   _self &operator= (const _self &rhs); 
   _self &operator= (const NativeType &rhs); 
 

                                                 
2 The name of the C++ variable is obviously arbitrary; we use the same variable name in C++ and Java 
merely for convenience. 



   // Casting to NativeType 
   operator NativeType() const { return _id.Get(_obj); } 
}; 
 
A base class JNIGenericFieldId defines a generic field identifier, used to build both regular 
and static field identifiers (JNIFieldId and JNIStaticFieldId, respectively). It contains a 
pointer to the JNI environment (of type JNIEnv*) and a field identifier (of type jfieldID). 
Listing 5 shows the class definitions (for brevity sake, JNIStaticFieldId is not shown; it is 
largely similar to JNIFieldId, except it uses GetStaticFieldId instead of GetFieldId). 
JNIFieldId is actually a class template, which may be instantiated for actual data types 
(through the JavaType parameter). In its turn, the class constructor is realized as a member 
template. Its protoClass parameter facilitates the various ways to determine the class 
whose field is being accessed. A class type may be either specified directly, or computed 
from a class instance (i.e., the object itself) or the class name. Class JNIClass (Listing 6) 
encapsulates this underlying functionality, implementing all the possible ways to 
compute a Java class type. JNIFieldId template also defines a pair of generic field access 
functions Get and Set, which are subsequently specialized for primitive types. 

Listing 5. Field identifier (excerpt from jni_field.h):  
class JNIGenericFieldId { 
protected: 
   JNIEnv *_env;  // Environment handle for subsequent field manipulation 
   jfieldID _id;  // Field ID 
 
   JNIGenericFieldId(JNIEnv *env, jfieldID id) : _env(env), _id(id) 
       { if (_id == 0) throw JNIException("Field not found"); } 
}; 
 
template<class JavaType> class JNIFieldId : public JNIGenericFieldId { 
public: 
   template<class T> 
   JNIFieldId(JNIEnv *env, T protoClass, const char *name, 
      const char *sig = SIGNATURE_OF(JavaType)) : 
       JNIGenericFieldId(env, env->GetFieldID(JNIClass(env, protoClass), name, sig)) {} 
 
   JavaType Get(jobject obj) const  
       { return static_cast<JavaType>(_env->GetObjectField(obj, _id)); } 
   void Set(jobject obj, JavaType val)  
       { _env->SetObjectField(obj, _id, val);} 
}; 

Listing 6. JNIClass – all the ways to construct a class (jni_class.h):  
class JNIClass { 
   jclass _clazz; // class handle 
public: 
   JNIClass(JNIEnv *env, jclass clazz) : _clazz(clazz) {} 
   JNIClass(JNIEnv *env, jobject obj) : _clazz(env->GetObjectClass(obj)) 
       { if (_clazz == 0) throw JNIException("Failed to get a class"); } 
   JNIClass(JNIEnv *env, const char *name) : _clazz(env->FindClass(name)) 
       { if (_clazz == 0) throw JNIException("Failed to get a class"); } 
  JNIClass(jclass clazz) : _clazz(clazz) {} 
 
   // Casting operators 



   operator jclass() { return _clazz; } 
   operator const jclass() const { return _clazz; } 
}; 
 
An interesting aspect of the field identifier template (JNIFieldId) is its type inference 
capability, which is mostly hidden from the user. Observe that the JNI only supplies a set 
of Get<type>Field functions, each corresponding to a different variable type; thus, 
accessing a variable apparently requires explicit specification of the appropriate function. 
We circumvent this requirement by using the template specialization technique, namely, 
we preinstantiate the member functions of JNIFieldId for all the primitive types  (i.e., 
JNIFieldId<jint>::operator=() is actually implemented using the SetIntField function etc.). This 
way, once the field is instantiated (for example, on an integer Java variable – 
JNIField<jint>), we no longer need to specify its type on every variable access. 
 
To achieve this aim, we start with a series of basic declarations, where each primitive 
type is associated with the corresponding Java basic type and Java array type, and is 
assigned the JNI type signature. The declarations are realized as C++ structs, which are 
later used by the compiler as a lookup table (among the rest, this relieves the user from 
having to remember signatures of various Java types; instead, those can be looked up 
whenever necessary). Listing 7 shows such definitions for the integer primitive type: 

Listing 7. Basic declarations (excerpt from jni_declarations.h):  
struct IntDeclarations { 
   typedef jint NativeType; 
   typedef jintArray ArrayType; 
   static const char *signature() { return "I"; } 
   static const char *array_signature() { return "[I"; } 
}; 
 
The following macros3 retrieve type-specific declarations from such structures: 
#define NATIVE_TYPE(Type) Type##Declarations::NativeType 
#define ARRAY_TYPE(Type)  Type##Declarations::ArrayType 
#define SIGNATURE(Type)  Type##Declarations::signature() 
#define ARRAY_SIGNATURE(Type) Type##Declarations::array_signature() 
For example, the Java type corresponding to the integer primitive type is 
NATIVE_TYPE(Int) = IntDeclarations::NativeType = jint. It is these macros that automatically 
map the Int part of the SetIntField function name into the jint variable type (with similar 
treatment for other types; see the usage in Listing 10). 
 
Finally, we employ the C++ preprocessor to empower the compiler with knowledge of 
which function to use in each context. Listing 8 shows a macro block that looks up basic 
type definitions to deduce which function to use. 

Listing 8. Macro block with definitions of JNIField member functions (excerpt from 
jni_field.h):  
#define JNI_FIELD_ID_METHODS(Type)     \ 
template<> class JNIFieldId<NATIVE_TYPE(Type)> : public JNIGenericFieldId { \ 

                                                 
3 ## is the concatenation operator of the C++ preprocessor. 



public:         \ 
   template<class T> JNIFieldId(JNIEnv *env, T protoClass, const char *name) :  \ 
 JNIGenericFieldId(env, env->GetFieldID(JNIClass(env, protoClass),  \ 
       name, SIGNATURE(Type))) {} \ 
         \ 
   NATIVE_TYPE(Type) Get(jobject obj) const      \ 
       { return _env->Get##Type##Field(obj, _id); }     \ 
   void Set(jobject obj, NATIVE_TYPE(Type) val)      \ 
       { _env->Set##Type##Field(obj, _id, val); }     \ 
}; 
 
To instantiate this macro for the primitive types, we invoke the macro 
INSTANTIATE_FOR_PRIMITIVE_TYPES(JNI_FIELD_ID_METHODS), defined in file 
jni_declarations.h as follows: 
 
#define INSTANTIATE_FOR_PRIMITIVE_TYPES(BLOCK_MACRO) \ 
BLOCK_MACRO(Boolean)     \ 
BLOCK_MACRO(Byte)     \ 
BLOCK_MACRO(Char)     \ 
BLOCK_MACRO(Short)     \ 
BLOCK_MACRO(Int)     \ 
BLOCK_MACRO(Long)     \ 
BLOCK_MACRO(Float)     \ 
BLOCK_MACRO(Double) 
 
Let us trace step by step what happens during compilation, using the integer type as an 
example. When the compiler expands the macro block for Int, it instantiates (more 
exactly, specializes) the JNIFieldId template with the parameter NATIVE_TYPE(Int) = jint. 
Listing 9 presents the (formatted) preprocessor output for JNIFieldId<jint> member 
functions. Thus, the member functions are realized in terms of correct accessor functions 
for the Int type. 

Listing 9. Preprocessor output for expanding JNIField member functions  
template<> class JNIFieldId<IntDeclarations::NativeType> : public JNIGenericFieldId { 
public: 
   template<class T> JNIFieldId(JNIEnv *env, T protoClass, const char *name) : 
       JNIGenericFieldId(env, env->GetFieldID(JNIClass(env, protoClass), 
             name, IntDeclarations::signature())) {} 
 
   IntDeclarations::NativeType Get(jobject obj) const 
       { return _env->GetIntField(obj, _id); } 
   void Set(jobject obj, IntDeclarations::NativeType val) 
       { _env->SetIntField(obj, _id, val); } 
}; 
 
As explained above, the operators of JNIField are defined in terms of Get/Set functions of 
JNIFieldId: 
JNIField<NativeType> &operator= (const NativeType &rhs) { 
    _id.Set(_obj, rhs); 
    return *this; 
} 
 
operator NativeType() const // casting to NativeType 



{ return _id.Get(_obj); } 
 
To conclude the presentation of field access, file jni_field.h has similar definitions for 
static fields (“class variables” in Java terminology). It defines a class template 
JNIStaticFieldId, which inherits from JNIGenericFieldId and is specialized for the primitive 
types, and a class template JNIStaticField, which has an additional data member of type 
jclass for keeping the appropriate class object. 

Array type declarations 
File jni_declarations.h also provides a set of declarations to facilitate JNI arrays. We 
actually build a lookup table, which the compiler consults for type inference. This table 
may be looked up either given a primitive type or an array type. For example, this way 
the compiler can automatically deduce that an array of jints is of type jintArray, and that an 
array of type jcharArray consists of jchars and has the signature “[C”. The template 
specialization technique is used here again, to duplicate basic declarations for array types 
(see Listing 10). 

Listing 10. Declarations for regular types and array types (excerpt from 
jni_declarations.h):  
template<class JavaType> struct JNITypeDeclarations {}; 
 
#define JNI_TYPE_DECLARATIONS(Type)    \ 
template<> struct JNITypeDeclarations<NATIVE_TYPE(Type)> {  \ 
   typedef Type##Declarations Declarations;    \ 
   typedef NATIVE_TYPE(Type) NativeType;    \ 
   typedef ARRAY_TYPE(Type) ArrayType;    \ 
   static const char *signature() { return SIGNATURE(Type); }  \ 
}; 
#define JNI_ARRAY_DECLARATIONS(Type)    \ 
template<> struct JNITypeDeclarations<ARRAY_TYPE(Type)> {  \ 
   typedef Type##Declarations Declarations;    \ 
   typedef NATIVE_TYPE(Type) NativeType;    \ 
   typedef ARRAY_TYPE(Type) ArrayType;    \ 
   static const char *signature() { return ARRAY_SIGNATURE(Type); } \ 
}; 
 
// Combo instantiation of JNITypeDeclarations specializations for all primitive types 
INSTANTIATE_FOR_PRIMITIVE_TYPES(JNI_TYPE_DECLARATIONS) 
INSTANTIATE_FOR_PRIMITIVE_TYPES(JNI_ARRAY_DECLARATIONS) 
 
// auxiliary macros for mapping JNI types into corresponding declarations 
#define DECLARATIONS_OF(JavaType) \ 
JNITypeDeclarations<JavaType>::Declarations 
#define NATIVE_TYPE_OF(JavaType)  \ 
JNITypeDeclarations<JavaType>::NativeType 
#define ARRAY_TYPE_OF(JavaType)  \ 
JNITypeDeclarations<JavaType>::ArrayType 
#define SIGNATURE_OF(JavaType)  \ 
JNITypeDeclarations<JavaType>::signature() 
 
Listing 11 shows the expanded macro block with specialization of the JNITypeDeclarations 
template for jint and jintArray (formatted preprocessor output). 



Listing 11. Sample preprocessor output for expanding the specialization of the 
JNITypeDeclarations structure  
template<> struct JNITypeDeclarations<IntDeclarations::NativeType> 
{ 
  typedef IntDeclarations Declarations; 
  typedef IntDeclarations::NativeType NativeType; 
  typedef IntDeclarations::ArrayType  ArrayType; 
  static const char *signature() 
  { return IntDeclarations::signature(); } 
};    
 
template<> struct JNITypeDeclarations<IntDeclarations::ArrayType> 
{ 
  typedef IntDeclarations Declarations; 
  typedef IntDeclarations::NativeType NativeType; 
  typedef IntDeclarations::ArrayType  ArrayType; 
  static const char *signature() 
  { return IntDeclarations::array_signature(); } 
}; 

User-defined data types 
Our framework also allows additional declarations for custom (non-primitive) types, so 
that they can be used by the compiler for automatic type inference. Listing 12 exemplifies 
this feature with the declarations structure for String data type. 

Listing 12. String as an example of a custom data type (excerpt from jni_declarations.h):  
struct StringDeclarations { 
   typedef jstring NativeType; 
   typedef jobject ArrayType; 
   static const char *signature() { return "Ljava/lang/String;"; } 
   static const char *array_signature() { return "[Ljava/lang/String;"; } 
}; 
 
JNI_TYPE_DECLARATIONS(String) 
 
Such declarations are immediately available for the compiler to utilize. For example, to 
assign a new value to the string field of the running example (see Listing 1) from the C++ 
code, we use the following definition: 
JNIStaticField<jstring>(env, obj, "stringField") = env->NewStringUTF("Good-bye, world!"); 
Specifically, we do not specify explicitly the corresponding type signature. The compiler 
infers it automatically, due to the default value const char *sig = SIGNATURE_OF(JavaType) 
in the constructor of JNIStaticFieldId (a similar case for JNIFieldId is shown in Listing 5). 

Invocation of Java methods 
Java methods may be invoked from native code using dedicated JNI functions 
Call<Type>Method (as well as Call<Type>MethodA and Call<Type>MethodV), with explicit 
specification of the types of parameters and the return value. Apparently, a similar 
template trick could be used to automate these function calls too. However, this happens 
to be quite difficult on a more detailed examination, as C++ performs no type inference 



on function return values (and anyway, complex parameter signatures would be very hard 
to automate). 

Resource management 
In this section we develop a general resource management mechanism, and then apply it 
to simplify various JNI use cases. Our resource management approach is based on the 
C++ "construction as resource acquisition" idiom [2]: resources are allocated in the 
constructor, and are released in the destructor of dedicated auxiliary objects. This idiom 
is implemented using the Proxy pattern [4], with functionality similar to that of auto_ptr 
template of the C++ Standard Library [3]. 
 
Listing 13 shows a JNIResource template, whose parameter is assumed to provide the 
following four definitions: 

• JResource type: the original Java resource type (e.g., jintArray) 
• Resource type:  the corresponding exported resource (e.g., jint*) 
• GetF: functional object for resource allocation, of the form 

Resource GetF::operator()(JNIEnv *, JResource) 
• ReleaseF: functional object for resource deallocation, of the form 

void ReleaseF::operator()(JNIEnv *, JResource, Resource) 
The GetF and ReleaseF functional objects provide default allocation and deallocation 
facilities. Note that the JNI allows customized resource management (e.g., the isCopy 
parameter for allocation and the mode parameter for deallocation). This behavior could be 
achieved by supplying a user-defined functional object as an additional parameter to the 
constructor (in case of allocation), or to the function ReleaseResource (to be used prior to 
destruction for explicit customized deallocation). 

Listing 13. JNIResource template (excerpt from jni_resource_base.h; trivial function 
bodies have been omitted for brevity):  
template<class JNIResourceSettings> class JNIResource { 
   typedef JNIResource<JNIResourceSettings> _self; 
   typedef typename JNIResourceSettings::JResource JResource; 
   typedef typename JNIResourceSettings::Resource Resource; 
   typedef typename JNIResourceSettings::GetF DefaultGetF; 
   typedef typename JNIResourceSettings::ReleaseF DefaultReleaseF; 
 
   bool _owns;  // true if the current object owns the resource 
protected: 
   JNIEnv *_env;  // Java environment handle 
   JResource _jresource; // Java resource handle 
   Resource _resource; // resource handle 
 
public: 
   JNIResource() : _env(0), _jresource(0), _resource(0), _owns(0) {} 
   JNIResource(JNIEnv *env, JResource jresource) : 
      _env(env), _owns(true), _jresource(jresource) 
   { _resource = DefaultGetF()(_env, _jresource); } 
    
   template<class GetF> 
   JNIResource(JNIEnv *env, JResource jresource, GetF &getF) : 
      _env(env), _owns(true), _jresource(jresource) 



   { _resource = getF(_env, _jresource); } 
    
   template<class GetF> 
   JNIResource(JNIEnv *env, JResource jresource, const GetF &getF); 
 
   JNIResource(_self &x) : _env(x._env), _owns(x._owns), 
            _jresource(x._jresource), _resource(x.release()) {} 
   _self &operator= (JNIResource &x); 
 
   ~JNIResource() { ReleaseResource(); } 
 
   void ReleaseResource()  
   { if (_owns) DefaultReleaseF()(_env, _jresource, release()); } 
  
   template<class ReleaseF> 
   void ReleaseResource(ReleaseF &releaseF) 
   { if (_owns) releaseF(_env, _jresource, release()); } 
    
   template<class ReleaseF> 
   void ReleaseResource(const ReleaseF &releaseF); 
    
   // casting operators 
   operator Resource() { return get(); } 
   operator const Resource() const { return get(); } 
    
   Resource &get() { return _resource; } 
   const Resource &get() const { return _resource; } 
 
   Resource release(); 
}; 
 
We now proceed to a number of JNI use cases, and demonstrate how they can be 
simplified with the resource management described above. In these cases, JNIResource 
template is used as a base class, from which individual resource managers for strings, 
arrays etc. are derived. To instantiate the template, each resource managers defines an 
auxiliary structure of settings, which provides the four mandatory components of the 
template parameter (see above). Notice that all the resources that inherit from JNIResource 
have a default constructor, so that arrays of resources can be defined. 

Strings 
The JNI allows two kinds of strings, namely, using regular (UTF-8) or wide (Unicode) 
characters. Listing 14 exemplifies the former case. The C++ Resource of type const char* 
corresponds to the original Java resource of type jstring (JResource in our terms). 
JNIStringUTFCharsSettings implements (what in Java terminology would be called 
interface) JNIResourceSettings, which can serve a parameter to JNIResource template 
above. Applications should use class JNIStringUTFChars, which inherits from 
JNIResource<JNIStringUTFCharsSettings> and provides asString conversion function (for 
convenient usage of C++ std::string instead of raw char*; note, however, that such 
conversion physically copies the characters).  
The constructors of JNIStringUTFChars use the default GetF allocator to acquire the string 
characters (via the underlying JNI function GetStringUTFChars), and the destructor 



releases them via ReleaseStringUTFChars. If isCopy parameter is in use, its value is updated 
to reflect if original Java string characters have been copied to temporary storage. The 
first two (non-default) constructors require explicit specification of the Java resource 
(JResource), while the last two compute it “on the fly”, by first building a JNIField (or a 
JNIStaticField) and then obtaining its handle. This technique4 allows to easily access string 
fields of objects given an object handle, its class type or class name (for static fields). For 
instance, the following code attaches a C++ variable to the static string field of the 
running example (see Listing 1), using the names of the host class and the string field: 
JNIStringUTFChars str(env, “JniExample”, “stringField”). The string value can then be printed 
simply using cout << str.get(). 
Observe that as Java strings cannot be modified, such are also the strings exported into 
C++. Hence, only the const version of operator[] is provided here. Function length returns 
the length of the C++ string (using the JNI function GetStringUTFLength). 

Listing 14. Accessing string characters as UTF-8 (excerpt from jni_resource.h):  
struct JNIStringUTFCharsSettings { 
   typedef jstring JResource; 
   typedef const char *Resource; 
 
   struct GetF { 
       jboolean *_isCopy; 
       GetF(jboolean *isCopy = 0) : _isCopy(isCopy) {} 
       Resource operator() (JNIEnv *env, JResource jstr) const 
       { return env->GetStringUTFChars(jstr, _isCopy); } 
   }; 
 
   struct ReleaseF { 
       void operator() (JNIEnv *env, JResource jstr, Resource str) const 
       { env->ReleaseStringUTFChars(jstr, str); } 
   }; 
}; 
 
class JNIStringUTFChars : public JNIResource<JNIStringUTFCharsSettings> { 
   typedef JNIStringUTFCharsSettings _settings; 
   typedef JNIResource<_settings> _super; 
public: 
   JNIStringUTFChars() {} 
   JNIStringUTFChars(JNIEnv *env, jstring jstr) : _super(env, jstr) {} 
   JNIStringUTFChars(JNIEnv *env, jstring jstr, jboolean *isCopy) : 
       _super(env, jstr, _settings::GetF(isCopy)) {} 
    
   template<class T> 
   JNIStringUTFChars(JNIEnv *env, T arg, const char *name); 
   template<class T> 
   JNIStringUTFChars(JNIEnv *env, T arg, const char *name, bool isStatic); 
 
   const char &operator[] (int i) const { return _resource[i]; } 
   const int length() const { return env->GetStringUTFLength(jresource); } 
   string asString() const { return string(_resource); } 
}; 
                                                 
4 Such computation of the Java resource is performed by an auxiliary template class GetJResource; for the 
complete definition of this mechanism see file jni_resource.h. 



 
To replace the value of a Java string, we should first create a new string that can later 
“survive” in the Java environment. In the code fragment below, a C++ variable is 
instantiated on the static string field of the running example (see Listing 1), and then 
assigned a brand new Java string created with the JNI function NewStringUTF: 
JNIStaticField<jstring>(env, obj, "stringField") = env->NewStringUTF("Good-bye, world!"); 
Note that there is no need to worry about eventually releasing the memory occupied by 
this newly created string – this is performed by Java garbage collector. 
 
File jni_resource.h also defines class JNIStringChars for accessing Java strings with wide 
(Unicode) characters. This definition is mostly similar to JNIStringUTFChars, except it 
uses a Resource of type const jchar* instead of const char*. 

Arrays 
Arrays feature most of the functionality presented till now. In particular, they provide 
automatic acquisition and release of elements in the constructor and destructor 
respectively (the template specialization trick is used here again to preinstantiate the array 
template for all primitive types, so that the appropriate Get<Type>ArrayElements / 
Release<Type>ArrayElements functions are automatically selected based on the context). 
Function size uses the JNI facility GetArrayLength to determine the number of array 
elements. Two versions of operator[] (regular and const) are provided to access the 
individual elements.  
 
File jni_resource.h contains the implementation. Template class JNIArray inherits from 
JNIResource, parameterized with the appropriate JNIArraySettings. The latter is a template 
in its own right, which has a parameter specifying the native element type. The array type 
and signature are obtained from the element type using the declarations of file 
jni_declarations.h (see Listing 10). To access the integer array field of the running example 
(see Listing 1), we instantiate a corresponding C++ variable as follows:  
JNIArray<jint> arr(env, obj, “intArray”).  Subsequent access of the array elements is 
straightforward: arr[0] = 0.  
The default behavior of the JNIArray is to copy all the array elements back into Java 
environment once the C++ array goes out of scope (this is done by function 
Release<Type>ArrayElements invoked from the array destructor). When this behavior 
needs to be overridden, use member function CustomRelease to set the desired mode for 
Release<Type>ArrayElements. 
 
Occasionally, it is not necessary to manipulate an entire Java array, which may be quite 
large. For cases when only a part of the array needs to be accessed, the JNI provides a 
pair of functions Get<Type>ArrayRegion / Set<Type>ArrayRegion. File jni_utils.h defines 
template functions GetArrayRegion / SetArrayRegion (preinstantiated at compile time for 
primitive types) that are capable of deducing the element type based on their parameters. 

Monitors 
Monitors serve to ensure mutual exclusion of threads competing for a shared resource. To 
ensure resource integrity (“thread safety”), threads should request to enter a monitor at 



the beginning of the critical section, and leave it at the end of the section. We propose a 
resource management technique that uses an auxiliary automatic object of type 
JNIMonitor, whose constructor enters a monitor, and whose destructor leaves the monitor 
as soon as the object goes out of scope (see Listing 15). The constructor of JNIMonitor 
receives a handle to the object that constitutes a shared resource protected by this 
monitor. 

Listing 15. Monitors (excerpt from jni_resource.h):  
struct JNIMonitorSettings { 
   typedef jobject JResource; 
   typedef jobject Resource; 
 
   struct GetF { 
       Resource operator() (JNIEnv *env, JResource obj) const { 
           env->MonitorEnter(obj); 
           return obj; 
      } 
   }; 
   struct ReleaseF { 
       void operator() (JNIEnv *env, JResource obj, Resource dummy) const 
       { env->MonitorExit(obj); } 
   }; 
}; 
 
class JNIMonitor : public JNIResource<JNIMonitorSettings> { 
public: 
   JNIMonitor() {} 
   JNIMonitor(JNIEnv *env, jobject obj) : 
      JNIResource<JNIMonitorSettings>(env, obj) {} 
}; 
 
Here is a sample code fragment which uses a monitor: 
void sample_function(JNIEnv *env, jobject obj) { 
… 
  { // start the critical section block 
    JNIMonitor mon(env, obj); 
    // do the critical section stuff here 
    … 
    // the destructor of ‘mon’ automatically exits 
    // the underlying Java monitor 
  } 
… 
} 

Global references 
It is sometimes necessary to obtain a reference to a Java object, so that it can be used 
across the function boundaries of C++ code. In such cases, a global reference to this 
object should be reserved (in contrast to most JNI functions that yield a local reference, 
which expires as soon as the current scope terminates). The last use case defined in file 
jni_resource.h implements an auxiliary template class JNIGlobalRef, whose constructor 
acquires and destructor releases a global reference to the specified object (see sample 
usage in Listing 16). 



Using the code 
Following the STL methodology, all the framework code resides in header files and is 
entirely template based, so clients do not need to compile their applications with any 
additional libraries. In fact, client applications only need to include the master file 
jni_master.h, which itself #includes all the other headers. The entire code of this article 
with complete Java – C++ integration examples can be obtained from the C++ Report 
Web site at http://www.creport.com. 

A more elaborate example 
We now apply the JNI encapsulation framework to a more substantial example. Suppose 
we have a Java application in which several concurrent threads generate (a predefined 
number of) objects with string IDs. The task is to collect these objects in a thread-safe 
way, and ultimately sort them by their IDs. Since earlier versions of the Java 
Development Kit (such as JDK 1.1) did not have the Collections Framework, it is quite 
natural to implement the sorting container in native C++ code using the STL. File 
JniComplexExample.java (not shown here for the sake of brevity) contains the Java 
part of this example, which uses the following native functions: 

• init_native_resources() – initializes the native code data structures 
• clean_native_resources() – releases the native resources 
• register_object() – inserts a given object into the container 
• recall_objects() – returns a sorted array of the collected objects 

 
Listing 16 shows the native code for the container, implemented using the STL multimap. 
The container holds the (Java originated) objects by global references5, associated with 
their string IDs. The container is realized as a singleton object6, which has two thread-
safe access functions:  

• insert() – collects a given object 
• exportAllObjects() – returns all the collected objects as a vector (observe that this 

vector is inherently sorted, as the objects are extracted from a multimap). 
To ensure code portability, thread-safety is implemented using JNI monitors. Critical 
sections start with monitor definition and last until the monitor is automatically destroyed 
as it goes out of scope. 

Listing 16. Native code implementation of a thread-safe sorting container (excerpt from 
file jni_complex_example.cpp):  
class SampleContainer { 
   friend class auto_ptr<SampleContainer>; 
   static auto_ptr<SampleContainer> instance; 
 
   typedef multimap<string, JNIGlobalRef<jobject> *> MapOfObjects; 
   MapOfObjects mapOfObjects; // the container implementation 
   JNIGlobalRef<jobject> monitor; // monitor (for critical sections) 
   JNIEnv *_env;   // the environment variable 
 
   SampleContainer(JNIEnv *env) : _env(env), monitor(env, getMonitorObject(env)) {} 
                                                 
5 Global references are required so that the Java garbage collector does not destroy the objects prematurely. 
6 Our singleton implementation uses the STL auto_ptr along the guidelines of [5]. 



   ~SampleContainer();  // the dtor purges all the map elements 
 
   jobject getMonitorObject(JNIEnv *env) {  // allocating the monitor object 
    JNIClass objectClass(env, "java/lang/Object"); 
    jmethodID constructorId = env->GetMethodID(objectClass, "<init>", "()V"); 
    return env->NewObject(objectClass, constructorId); 
   } 
    
public: 
  static SampleContainer *getInstance(JNIEnv *env = 0) { 
    if (instance.get() == 0) { 
      if (env == 0) { // raise an exception flag in Java, then throw a C++ exception 
        env->ThrowNew(JNIClass(env, "java/lang/Exception"), “Init failed”); 
        throw new JNIException("Init failed"); 
      } 
      static JNIGlobalRef<jobject> initMonitor(env, getMonitorObject(env)); 
 
      // Double-checked locking is used to provide correct initialization 
      JNIMonitor startCriticalSection(env, initMonitor); 
      if (instance.get() == 0) 
        instance = auto_ptr<SampleContainer>(new SampleContainer(env)); 
    } 
    return instance.get(); 
  } 
 
  static void clean() { delete instance.release(); } // explicitly release the native resources 
 
  void insert(jobject obj) { 
    JNIMonitor startCriticalSection(_env, monitor); 
 
    JNIStringUTFChars str(_env, obj, "name"); // retrieve the object ID 
    JNIGlobalRef<jobject> *ref = new JNIGlobalRef<jobject>(_env, obj); 
    mapOfObjects.insert(make_pair(str.asString(), ref)); 
   } 
 
  vector<JNIGlobalRef<jobject> *> exportAllObjects() { 
    JNIMonitor startCriticalSection(_env, monitor); 
 
    vector<JNIGlobalRef<jobject> *> result(mapOfObjects.size(), 0); 
    MapOfObjects::iterator p; vector<JNIGlobalRef<jobject> *>::iterator q; 
    for (p = mapOfObjects.begin(), q = result.begin(); 
          p != mapOfObjects.end(); p++, q++) 
      *q = (*p).second; 
    return result; 
  }    
}; 
 
// Singleton instance 
auto_ptr<SampleContainer> SampleContainer::instance; 
 
/* Implementation of native calls (note that their prototypes are automatically generated) */ 
 
// init_native_resources() 
JNIEXPORT void JNICALL  
Java_JniComplexExample_init_1native_1resources (JNIEnv *env, jclass clazz) 
{ SampleContainer::getInstance(env); } 



 
// clean_native_resources() 
JNIEXPORT void JNICALL  
Java_JniComplexExample_clean_1native_1resources (JNIEnv *env, jclass clazz) 
{ SampleContainer::clean(); } 
 
// register_object() 
JNIEXPORT void JNICALL  
Java_JniComplexExample_register_1object (JNIEnv *env, jclass clazz, jobject obj) 
{ SampleContainer::getInstance()->insert(obj); } 
 
// recall_objects 
JNIEXPORT jobjectArray JNICALL  
Java_JniComplexExample_recall_1objects (JNIEnv *env, jclass clazz) { 
  // obtain the vector of global references 
  vector<JNIGlobalRef<jobject> *> allObjects = SampleContainer::getInstance()->exportAllObjects(); 
  // create an output array of type ‘NameWithInfo[]’ 
  JNIClass objectClass(env, "NameWithInfo"); 
  jobjectArray result = env->NewObjectArray(allObjects.size(), objectClass, 0); 
  // export the objects 
  for (int i = 0; i < allObjects.size(); i++) 
    env->SetObjectArrayElement(result, i, *allObjects[i]); 
  return result; 
} 

Discussion 
Let us review the properties of the solution we developed: 
1. Easier to use, more straightforward approach 

Whenever possible, the compiler infers variable types from the context. Java data 
structures are automatically exported to (and in order to save changes, are later 
imported from) the C++ code. Auxiliary technical operations are encapsulated in 
higher-level templates. 

2. Less error-prone API 
Fewer functions to call means fewer opportunities to err in successive function 
invocations. Also, it is now possible to perform various checks at compile time, 
instead of discovering problems much later as run-time errors.  

3. Proper resource management 
Resources are automatically deallocated when they are no longer necessary, thus 
preventing resource leaks, deadlocks, and starvation. 

4. Portability issues 
Java portability is preserved by using only ANSI-standard C++ and the STL [3]. 

5. Compilation overhead 
A possible drawback of the suggested framework is the compile-time penalty it 
imposes, due to heavy use of the preprocessor and embedded templates. However, 
this overhead is limited to the compilation time, and does not propagate to the run-
time. The code size increase is also negligible, since most of the templates only 
provide type definitions (and thus do not need run-time representation at all), and 
unused template instantiations are discarded by the code optimizer. 
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Sidebar: Java Native Interface in a nutshell 
As set forth in [1], the Java Native Interface (JNI) enables Java code running on a Java 
Virtual Machine (JVM) to work in concert with code written in other programming 
languages (e.g., C, C++ or assembly, referred to as “native languages” due to their 
“nativeness” to the execution environment). The JNI can be handy to foster code reuse or 
to implement mission-critical parts of the code in a native language for superior 
efficiency. The JNI may also occasionally be useful to facilitate platform-dependent 
features not available through the standard Java class library. The Java Native Interface 
provides bidirectional cooperation between Java code and native code, so that Java 
methods may transparently invoke native routines, and vice versa. Additional functional 
wealth available to native applications includes manipulating Java objects, access to Java 
class information and run-time type checking facilities, dispatching Java exceptions, as 
well as convenient usage of Java thread synchronization mechanisms. Finally, the so-
called Invocation API allows any native application to directly operate the Java Virtual 
Machine as a regular native object. 
 
Every native function receives a JNI interface pointer through which it calls all the other 
JNI functions. For the sake of implementation flexibility, the interface pointer indirectly 
points to a table of pointers to JNI functions. Observe, therefore, that calling a native 
method always entails several dereference operations. Note also that the interface pointer 
is only valid in the current thread. This pointer is implicit in Java signatures of native 
methods, and constitutes the (explicit) first parameter in their native programming 
language. The JNI also prescribes the meaning of the second parameter to native 
methods. This parameter contains a reference to the host object (this) for instance 
methods (nonstatic functions), and a reference to the Java class object for class methods 
(static functions). Libraries of native functions are normally loaded dynamically at run-
time, using the System.loadLibrary method. Name mangling conventions for native 
methods allow overloading, and are stipulated by the JNI Specification. 
 



The JNI allows native code to access Java objects of both primitive types (e.g., int, char) 
and user-defined types. The JNI Specification associates each Java primitive type with an 
equivalent native type (for instance, the jfloat C++ native type corresponds to the Java 
float, and is implemented as a 32-bit variable). Native methods may receive Java objects 
as parameters. Retrieving data members of a compound parameter (including individual 
array entries), or creating new objects in the Java environment, is performed by calling 
appropriate JNI functions. The Java Virtual Machine keeps track of all the objects made 
available to the native code, so that they do not get garbage-collected while in use. 
Calling Java methods and raising exceptions from the native code is also accomplished 
through the variety of JNI functions. 
 

About the authors 
Evgeniy Gabrilovich is an Algorithm Developer at Zapper Technologies Inc. He holds 
an M.Sc. degree in Computer Science from the Technion – Israel Institute of Technology. 
His interests involve Computational Linguistics, Information Retrieval, Artificial 
Intelligence, and Speech Processing. He can be contacted at gabr@acm.org. 
Lev Finkelstein is an Algorithm Developer at Zapper Technologies Inc., and is a Ph.D. 
student in Computer Science at the Technion – Israel Institute of Technology. His 
interests include Artificial Intelligence, Machine Learning, Multi-agent systems, and Data 
Mining.  He can be reached at lev@zapper.com. 
 


